
Introduction to Secure
Multi-Party Computation

Ryan Moreno

Secure Multi-Party Computation

● Requirements

○ n actors with private data x1, x2, … xn
○ compute F(x1, x2, … xn)

○ don’t leak any other information
○ no trusted third parties

● Applications
○ Distributed voting
○ Private bidding and auctions

The Millionaire Problem - Yao

you, a multi-millionaire me, also a multi-millionaire

Do you have more money?

● Don’t leak any other information

● No trusted third-party

The Millionaire Problem - Yao

Alice, $A Million Bob, $B Million

Does Alice have more money? Effectively: A ≥ B

● Assume A, B ∈ {1, 2, … 10}

● Alice has public RSA key (e, n) and private (d, n)

The Millionaire Problem - Yao

● choose random x such that |x| = |n|
● c = encrypt(x) using Alice’s public key (e, n)
● m = c - B + 1 mod n

Alice, $A Million Bob, $B Million

The Millionaire Problem - Yao

● choose random x such that |x| = |n|
● c = encrypt(x) using Alice’s public key (e, n)
● m = c - B + 1 mod n

← m looks random

Alice, $A Million Bob, $B Million

The Millionaire Problem - Yao

● Xi = decrypt(m + i - 1), i ∈ [1, 10] XB = x, but all Xi look random

● choose random x such that |x| = |n|
● c = encrypt(x) using Alice’s public key (e, n)

● m = c - B + 1 mod n

← m looks random

Alice, $A Million Bob, $B Million

The Millionaire Problem - Yao

● Xi = decrypt(m + i - 1), i ∈ [1, 10] XB = x, but all Xi look

random
● choose a random prime p such that |p| = |n|/2

and calculate Xi mod p Xi mod p all look random

● Wi = (Xi mod p + (i ﹥A)) mod p, i ∈ [1, 10]

add 1 (mod p) iff i is greater than Alice’s wealth

● choose random x such that |x| = |n|
● c = encrypt(x) using Alice’s public key (e, n)

● m = c - B + 1 mod n

← m looks random

Alice, $A Million Bob, $B Million

The Millionaire Problem - Yao

● Xi = decrypt(m + i - 1), i ∈ [1, 10] XB = x, but all Xi look random

● choose a random prime p such that |p| = |n|/2

and calculate Xi mod p Xi mod p all look random

● Wi = (Xi mod p + (i ﹥A)) mod p, i ∈ [1, 10]

add 1 (mod p) iff i is greater than Alice wealth

p, W1… W10→

● choose random x such that |x| = |n|
● c = encrypt(x) using Alice’s public key (e, n)

● m = c - B + 1 mod n

← m looks random

1 was added to WB iff B > A

Wi looks random and Bob can’t

 tell when 1 was added Alice, $A Million Bob, $B Million

The Millionaire Problem - Yao

● Xi = decrypt(m + i - 1), i ∈ [1, 10] XB = x, but all Xi look random

● choose a random prime p such that |p| = |n|/2

and calculate Xi mod p Xi mod p all look random

● Wi = (Xi mod p + (i ﹥A)) mod p, i ∈ [1, 10]

add 1 (mod p) iff i is greater than Alice’s wealth

p, W1 … W10→

● choose random x such that |x| = |n|
● c = encrypt(x) using Alice’s public key (e, n)

● m = c - B + 1 mod n

← m looks random

● result = (WB ≡ x (mod p))

1 was added to WB iff B > A

Wi looks random and Bob can’t

 tell when 1 was added

Alice, $A Million Bob, $B Million

The Millionaire Problem - Yao

● Xi = decrypt(m + i - 1), i ∈ [1, 10] XB = x, but all Xi look random

● choose a random prime p such that |p| = |n|/2

and calculate Xi mod p Xi mod p all look random

● Wi = (Xi mod p + (i ﹥A)) mod p, i ∈ [1, 10]

add 1 (mod p) iff i is greater than Alice’s wealth

p, W1 … W10→

● choose random x such that |x| = |n|
● c = encrypt(x) using Alice’s public key (e, n)

● m = c - B + 1 mod n

← m looks random

● result = (WB ≡ x (mod p))

If A ≥ B, then 0 added, so

WB = XB mod p = x mod p
← result 1 iff A ≥ B

1 was added to WB iff B > A

Wi looks random and Bob can’t

 tell when 1 was added

Alice, $A Million Bob, $B Million

The Millionaire Problem - Yao

● Correctness
○ result is 1 iff A ≥ B

● Security
○ Alice learns random number m
○ Bob learns random prime p
○ Bob learns W1 … W10

■ Bob can’t calculate Xi except when i = B, so Bob can’t calculate other Wi

■ Bob can’t recover Xi from Wi due to loss of information with mod p

The Millionaire Problem - Yao

● Assumptions
○ Actors will follow protocol
○ Actors won’t lie about wealth
○ Actors won’t broadcast their wealth

● Ideal vs. Real World
○ Ideal has a trusted third-party
○ Real world must mimic ideal level of security

● Alice offers n messages, Bob selects and receives one
○ Alice doesn’t know which Bob chose
○ Bob doesn’t know the other messages
○ Without loss of generality, we will assume single-bit messages

Oblivious Transfer (OT)

Alice, has b1, b2, … bn Bob, wants bi

OT - Goldreich, Micali, Widgerson

Alice, has b1, b2, … bn Bob, wants bi

● choose (f, f -1, Bf) random trapdoor permutation

(function, inverse function, hard-core bit)

f, Bf →

OT - Goldreich, Micali, Widgerson

Alice, has b1, b2, … bn Bob, wants bi

● choose (f, f -1, Bf) random trapdoor permutation

(function, inverse function, hard-core bit)

f, Bf →

● choose random x1, x 2, … xn

● (y1, y2, … yi , … yn) = (x1, x2, … f(xi), … xn)

← (y1, … yn) looks random

OT - Goldreich, Micali, Widgerson

Alice, has b1, b2, … bn Bob, wants bi

● choose (f, f -1, Bf) random trapdoor permutation

(function, inverse function, hard-core bit)

f, Bf →

● choose random x1, x 2, … xn

● (y1, y2, … yi , … yn) = (x1, x2, … f(xi), … xn)

← (y1, … yn) looks random

● compute (c1, … cn) = (Bf(f -1(y1)), … Bf(f -1(yn))) ci = Bf(xi)

● compute (d1, … dn) = (b1⊕ c1, … bn ⊕ cn) di = bi ⊕ xi

 looks random (d1, … dn) →

OT - Goldreich, Micali, Widgerson

Alice, has b1, b2, … bn Bob, wants bi

● choose (f, f -1, Bf) random trapdoor permutation

(function, inverse function, hard-core bit)

f, Bf →

● choose random x1, x 2, … xn

● (y1, y2, … yi , … yn) = (x1, x2, … f(xi), … xn)

← (y1, … yn) looks random

● compute (c1, … cn) = (Bf(f -1(y1)), … Bf(f -1(yn))) ci = xi

● compute (d1, … dn) = (b1⊕ c1, … bn ⊕ cn) di = bi ⊕ xi

 looks random (d1, … dn) →

● result = di ⊕ xi result = bi

OT - Goldreich, Micali, Widgerson

● Correctness

○ result is bi

● Security
○ Alice learns (y1, ... yn) which all look random
○ Alice doesn’t learn anything about i
○ Bob learns (d1, ... dn) which all look random except di

○ Bob can’t calculate any other bj
■ dj = bj ⊕ cj
■ cj calculated with inverse of trapdoor function
■ xor with random loses all information

OT used for simple SMPC

Alice, has x Bob, has y

● Alice and Bob have private inputs x and y respectively

● Want to compute boolean function F(x, y)

OT used for simple SMPC

Alice, has x Bob, has y

● Alice computes b0 = F(x, 0) and b1 = F(x, 1)

● Bob uses OT to learn by = F(x, y)

● Bob shares the answer with Alice

OT used for simple SMPC

Alice, has x Bob, has y

● Alice computes b0 = F(x, 0) and b1 = F(x, 1)

● Bob uses OT to learn by = F(x, y)

● Bob shares the answer with Alice

● Consider F(x, y) = x ∧ y
○ Alice has x = 0: F(0, y) doesn’t leak y
○ Bob has y = 0: F(x, 0) doesn’t leak x
○ Alice has x = 1: F(1, y) leaks y
○ Holds up to security of ideal world

OT used for simple SMPC

Alice, has x Bob, has y

● Alice computes b0 = F(x, 0) and b1 = F(x, 1)

● Bob uses OT to learn by = F(x, y)

● Bob shares the answer with Alice

● Single-gate, single-bit boolean functions only
○ Otherwise Alice would gain information at each individual OT

OT used for SMPC

Alice, has x Bob, has y

● Alice and Bob have private inputs x and y respectively

● Want to compute boolean function F(x, y) where F consists of

multiple gates and x and y are multiple bits
○ Each step will consider a single gate with single-bit inputs f(a, b)

with the output encoded

0: S
5

1: S
6

OT used for SMPC

● create encryption schemes S
1

 = (E
1

, D
1

) to S
6

● randomly select p, s, m, and u

● randomly assign S
3

 and S
4

 complimentary bits

● randomly assign S
5

 and S
6

complimentary bits

● create table for f(a, b)

← table with rows permuted and no private values

← D
3

 or D
4

 dependent on b

Alice, has a Bob, has b

S
1

E
1

(p) S
3

E
3

(q)

S
1

E
1

(s) S
4

E
4

(t)

S
2

E
2

(m) S
3

E
3

(n)

S
2

E
2

(u) S
4

E
4

(v)

b = 0: S
3

b = 1: S
4

a = 0: S
1

a = 1: S
2

Example: F(a, b) = a ∧ b

p ⊕ q = D
5

 (0 ∧ 0 = 0)

s ⊕ t = D
5

 (0 ∧ 1 = 0)

m ⊕ n = D
5

 (1 ∧ 0 = 0)

u ⊕ v = D
6

 (1 ∧ 1 = 1)

0: S
5

1: S
6

OT used for SMPC

● create encryption schemes S
1

 = (E
1

, D
1

) to S
6

● randomly select p, s, m, and u

● randomly assign S
3

 and S
4

 complimentary bits

● randomly assign S
5

 and S
6

complimentary bits

● create table for f(a, b)

← table with rows permuted and no private values

← D
3

 or D
4

 dependent on b

← D
1

 or D
2

 sent using OT dependent on a

Alice, has a Bob, has b

S
1

E
1

(p) S
3

E
3

(q)

S
1

E
1

(s) S
4

E
4

(t)

S
2

E
2

(m) S
3

E
3

(n)

S
2

E
2

(u) S
4

E
4

(v)

b = 0: S
3

b = 1: S
4

a = 0: S
1

a = 1: S
2

Example: F(a, b) = a ∧ b

p ⊕ q = D
5

 (0 ∧ 0 = 0)

s ⊕ t = D
5

 (0 ∧ 1 = 0)

m ⊕ n = D
5

 (1 ∧ 0 = 0)

u ⊕ v = D
6

 (1 ∧ 1 = 1)

0: S
5

1: S
6

OT used for SMPC

● create encryption schemes and table

← table with rows permuted and no private values

← D
3

 or D
4

 dependent on b

← D
1

 or D
2

 sent using OT dependent on a

Alice, has a Bob, has b

S
1

E
1

(p) S
3

E
3

(q)

S
1

E
1

(s) S
4

E
4

(t)

S
2

E
2

(m) S
3

E
3

(n)

S
2

E
2

(u) S
4

E
4

(v)

b = 0: S
3

b = 1: S
4

a = 0: S
1

a = 1: S
2

● use the pair of decryption keys to decode
the pair of values k, l in a row

● D
i
 = k ⊕ l D

i
= D

5
 or D

6

● result = 0 if D
5

, 1 otherwise result = f(a, b)

result →

0: S
5

1: S
6

OT used for SMPC

Alice, has a Bob, has b

S
1

E
1

(p) S
3

E
3

(q)

S
1

E
1

(s) S
4

E
4

(t)

S
2

E
2

(m) S
3

E
3

(n)

S
2

E
2

(u) S
4

E
4

(v)

b = 0: S
3

b = 1: S
4

a = 0: S
1

a = 1: S
2

0: S
9

1: S
10

S
5

E
5

(p) S
7

E
7

(q)

S
5

E
5

(s) S
8

E
8

(t)

S
6

E
6

(m) S
7

E
7

(n)

S
6

E
6

(u) S
8

E
8

(v)

b = 0: S
7

b = 1: S
8

● combine single-bit, single-gate steps
○ keep intermediate output assignments private
○ Use intermediate outputs as inputs

OT used for SMPC

● Correctness
○ result of each step is f(x, y)

■ final result is F(a, b)
○ any boolean function can be composed with ∧ and ¬

● Security
○ Alice learns either D

3
 or D

4
, uncorrelated with b

○ Alice learns only D
1

 or D
2

, according to a
○ Alice can only compute either D

5
 or D

6
 with both k and l

■ xor with random renders partial information useless
○ Alice doesn’t learn intermediate outputs because correlation is private
○ Bob learns only the final result
○ Bob doesn’t learn intermediate outputs because no information transfer

Secure Multi-Party Computation

● Recap
○ we’ve shown any boolean function can be securely computed
○ constraints - two actors, passive adversaries

● Goldreich, Micali, and Widgerson proved completeness for n actors
○ can have malicious adversaries provided at least n/2 are honest

Works Cited

A. C. Yao, “Protocols for Secure Computations,” in SFCS ’82 Proceedings of the 23rd Annual Symposium on Foundations of
Computer Science, 1982, pp. 160-164.

O. Goldreich, S. Micali, and A. Wigderson, “How to Play ANY Mental Game,” in STOC ’87 Proceedings of the nineteenth
annual ACM Symposium on Theory of Computing, 1987, pp. 218-229.

M. J. Fischer, “Lecture Notes: CPSC 461b: Foundations of Cryptography.” Yale University Department of Computer Science,
2009.

