Introduction to Secure
Multi-Party Computation

Ryan Moreno

Secure Multi-Party Computation

e Requirements

o n actors with private datax,, x.,, ... X,

172
o compute F(Xl’ X oo xn)
o don’tleak any other information
o notrusted third parties

e Applications
o Distributed voting
o Private bidding and auctions

The Millionaire Problem - Yao

Do you have more money?
e Don'tleak any other information
e No trusted third-party

N

you, a multi-millionaire me, also a multi-millionaire

The Millionaire Problem - Yao

Does Alice have more money? Effectively: A>B
e AssumeA Be{1,2,..10}
e Alice has public RSA key (e, n) and private (d, n)

N

Alice, $A Million Bob, $B Million

The Millionaire Problem - Yao

e choose random x such that |x| =|n|
e ¢ =encrypt(x) using Alice’s public key (e, n)
e m=c-B+1modn

N

Alice, $A Million Bob, $B Million

The Millionaire Problem - Yao

e choose random x such that |x| =|n|
e ¢ =encrypt(x) using Alice’s public key (e, n)
e m=c-B+1modn

@ «— m looks random

N

Alice, $A Million Bob, $B Million

e choose random x such that |x| = |n|
The Millionaire Problem - Yao @ c crvptusnsAlicespublickeyfen)

m=c-B+1modn

«— m looks random

e X = decryptim+i-1),i €[1, 10] Xg=x,butall X; look random

N

Alice, $A Million Bob, $B Million

e choose random x such that |x| = |n|

The Millionaire Problem - Yao @ c crvptusnsAlicespublickeyfen)

m=c-B+1modn

«— m looks random

e X = decryptim+i-1),i €[1, 10] Xg=x,butall X; look

random
@ e choose arandom prime p such that |p| =|n|/2
and calculate X. mod p X, mod p all look random
N e W,=(X.modp+(i >A)modp,i €[1,10]

add 1 (mod p) iff i is greater than Alice’s wealth

Alice, $A Million Bob, $B Million

e choose random x such that |x| = |n|

The Millionaire Problem - Yao @ c crvptusnsAlicespublickeyfen)

m=c-B+1modn

«— m looks random

o X = decryptim+i-1),i €[1, 10] Xg=x,butall X, look random
e choose arandom prime p such that |p| = |n|/2

@ and calculate X,. mod p X’.mod p all look random
° W,.=(I.modp+(i>A))modp,iE[1,1O]
Xl add 1 (mod p) iff i is greater than Alice wealth
p, Wl"' W10—>

1 was added to WB iff B>A
W’. looks random and Bob can’t
Alice, $A Million tell when 1 was added Bob, $B Million

e choose random x such that |x| = |n|
e c=encrypt(x) using Alice’s public key (e, n)

The Millionaire Problem -Yao =~ " 7™

< m looks random
° X’. =decryptim+i-1),i €[1, 10] Xg=x,butall X, look random
e choose arandom prime p such that |p| = |n|/2
and calculate X,. mod p X’.mod p all look random
@ e W.=(Xmodp+(i >A)modp,i €[1,10]
add 1 (mod p) iff i is greater than Alice’s wealth

el pW, .. W, ,—
1 was added to WB iff B>A

W’. looks random and Bob can’t
tell when 1 was added

result = (WB = x (mod p))

Alice, $A Million Bob, $B Million

e choose random x such that |x| = |n|
e c=encrypt(x) using Alice’s public key (e, n)

The Millionaire Problem -Yao =~ " 7™

< m looks random
° X’. =decryptim+i-1),i €[1, 10] Xg=x,butall X, look random
e choose arandom prime p such that |p| = |n|/2
and calculate X,. mod p X’.mod p all look random
@ e W.=(Xmodp+(i >A)modp,i €[1,10]
add 1 (mod p) iff i is greater than Alice’s wealth
Xl

p, Wl’" Wlo_)
1 was added to WB iff B>A
W,. looks random and Bob can’t

S e ° result=(WBEX(m0d p))
ell when 1 was adde If A > B, then 0 added, so

W; =X;modp=xmodp Bob, $B Million
—result 1iffA>B

Alice, $A Million

The Millionaire Problem - Yao

e Correctness
o resultis 1iffA>B

e Security
o Alicelearns random number m
o Boblearnsrandom primep
o Bob learns W, ... W_,
m Bob can'’t calculate X, except when i = B, so Bob can’t calculate other W.
m Bob can’t recover X, from W. due to loss of information with mod p

The Millionaire Problem - Yao

e Assumptions
o Actorswill follow protocol
o Actorswon’t lie about wealth
o Actorswon’t broadcast their wealth

e |deal vs. Real World

o Ideal has a trusted third-party
o Real world must mimic ideal level of security

Oblivious Transfer (OT)

e Alice offers n messages, Bob selects and receives one
o Alice doesn’t know which Bob chose
o Bobdoesn’t know the other messages
o Without loss of generality, we will assume single-bit messages

Alice, has bl, b2, ..b Bob, wants b.
n I

OT - Goldreich, Micali, Widgerson

e choose (f.f,B.) random trapdoor permutation
@ (function, inverse function, hard-core bit)

\

f, B, —

Alice, has bl, b2, ..b Bob, wants b.
n 1

OT - Goldreich, Micali, Widgerson

e choose (ff1, Bf) random trapdoor permutation
(function, inverse function, hard-core bit)
f’ Bf_)

e chooserandom Xpp X gy ooe X
N ° (yl, Yo eee Vis oen yn) = (xl, Xy oo f(xi), ... xn)

— (yl, yn) looks random

Alice, has bl, b2, ..b Bob, wants b.
n 1

OT - Goldreich, Micali, Widgerson

Alice, has bl, b2,

b
n

choose (f. f 7, Bf) random trapdoor permutation
(function, inverse function, hard-core bit)
f, Bf—>

e chooserandomx,, X .,... X
172 n

o (y17 y27 cee yi"" yn) =(Xl’ X27 cee f(X,‘)Y cee

— (yl, yn) looks random

compute (c;,...c,) = (BAf(y,)), . BAf *(y,))) ¢,;=B/x)
compute (d1’"’ dn) = (bléBcl, bnecn) d.= biex,.

looks random (dl, dn) —

Bob, wants b’.

OT - Goldreich, Micali, Widgerson

Alice, has bl, b2,

b
n

e choose (ff7, Bf) random trapdoor permutation
(function, inverse function, hard-core bit)
f, B, —
e chooserandom Xy X e X
bl (YI, YZ,---Y,-,---yn) =(X17 X27'--f(X")7"-X
<« (yl, yn) looks random

)

n

e compute (c;,...c)) = (BLf 1y). BAFHy

dn) - (bl
looks random (d

) ¢=x

n |
@cl,...b @c) d.=b.ox.
n n 1 I 1

1""dn) —

e compute (dl,

e result= d,. ®X, result = b,.

Bob, wants b’.

OT - Goldreich, Micali, Widgerson

e Correctness
o resultis b’.
e Security
o Alicelearns(y,, ...y,) which all look random
o Alicedoesn’t learn anything about i
o Boblearns(d,, ..d)which all look random except d,
o Bob can’t calculate any other b}.
m %=q@g
"G calculated with inverse of trapdoor function
m xor with random loses all information

OT used for simple SMPC

e Alice and Bob have private inputs x and y respectively
e Want to compute boolean function F(x, y)

Alice, has x Bob, has y

OT used for simple SMPC

e Alice computes bo = F(x, 0) and b1 =F(x, 1)
e BobusesOTtolearn by =F(x,y)
e Bobsharesthe answer with Alice

Alice, has x Bob, has y

OT used for simple SMPC

e Alice computes bo = F(x, 0) and bl =F(x, 1)
e BobusesOTtolearn by =F(x,y)
e Bobsharesthe answer with Alice

e ConsiderF(x,y)=xAy
N\l o Alicehasx=0: F(0,y)doesn’t leak y
o Bobhasy=0: F(x,0)doesn’t leak x
o Alicehasx=1: F(1,y)leaksy
o Holds up to security of ideal world

Alice, has x Bob, has y

OT used for simple SMPC

e Alice computes bo = F(x, 0) and b1 =F(x, 1)
e BobusesOTtolearn by =F(x,y)
e Bobsharesthe answer with Alice

e Single-gate, single-bit boolean functions only
‘ o Otherwise Alice would gain information at each individual OT

Alice, has x

Bob, has y

OT used for SMPC

e Alice and Bob have private inputs x and y respectively
e Want to compute boolean function F(x, y) where F consists of

multiple gates and x and y are multiple bits
o Each step will consider a single gate with single-bit inputs f(a, b)

@ with the output encoded

Alice, has x Bob, has y

e create encryptionschemesS, = (El, D1) to S6
e randomlyselectp,s,m,and u

e randomly assign S3 and S4 complimentary bits

OT used for SMPC

randomly assign S5 and 56 complimentary bits
e create table for f(a, b)

a=0:s b=0:5s
1 3« table with rows permuted and no private values
a—l. 52 \ / b—].. 54 <—D3 OrD4 dependentonb
S, | Eip |S;| Ej@
@ 51 El(s) 54 E4(t) Example: F(a,b)=a A b
peq=D, (0A0=0)
N S, | Em |S,| Ejn | set=D, (0A1=0)
men=D, (1A0=0)
S2 E2(u) S4 E4(V) uev=D, (1A1=1)
0:s
Alice, has a \ 1 55 Bob, has b

e createencryptionschemesS, = (E1’ D1) toS,
e randomlyselectp,s,m,andu

e randomly assign 53 and S4 complimentary bits

OT used for SMPC

randomly assign 55 and S6 complimentary bits
e create table for f(a, b)

a=0:s b=0:5s
1 3« table with rows permuted and no private values
a—1.52 \ / b—1.54 <—D3 OrD4 dependentonb
51 E1(p) 53 Es(Q) «— D, or D, sent using OT dependent on a
@ 51 El(s) 54 E4(t) Example: F(a,b)=a A b
peq=D, (0A0=0)
N S, | Em |S,| Ejn | set=D, (0A1=0)
men=D, (1A0=0)
Sy | B |5, EW uev=D, (1A1=1)
0:s
Alice, has a \ 1 55 Bob, has b

e create encryption schemes and table

«— table with rows permuted and no private values

— D3 or D4 dependent on b

OT used for SM PC —D, orD, sentusing OT dependentona

e use the pair of decryption keys to decode

the pair of values k, | inarow a=0: S1 b=0: S3

PY Di=k$’ Di=D50rD6 a=1:52\ / b=1:S4
e result=0if D, 1 otherwise result = f(a, b) 51 E1(p) 53 E3(q)

result —
@ S1 El(s) 54 E4(t)
\d S,| ESm |S,| E,n
S, Ew [|S,| E,W
Alice, has a \ 2: 25 Bob, has b

e combine single-bit, single-gate steps
o keepintermediate output assignments private
o Useintermediate outputs as inputs

OT used for SMPC

a=0:S1 b=O:S3 b=O:S7
a=1:52\ /b=1:s4 \ A/b=1:58
S, | Eip |S;| Ej@ S. | Ep |S, | Ef@
) S, | E8) |S,| E,W S, | Es) | Sy | Egt
N S, | Em |S,| E,n) S, | Em |S, | En
52 E,(u) 54 E,(v) 56 E(u) Ss Eq(v)
Alice, has a \ B: 3 \ 0: % Bob, has b
1:sS 1:S

OT used for SMPC

e Correctness
o result of each stepis f(x, y)
m finalresultis F(a, b)
o any boolean function can be composed with A and -
e Security
o Alicelearns either D,orD,, uncorrelated with b
o Alicelearnsonly D, or D,, accordingtoa
o Alice can only compute either D, or D, with both k and |
m xor with random renders partial information useless
Alice doesn’t learn intermediate outputs because correlation is private
Bob learns only the final result
o Bob doesn’t learn intermediate outputs because no information transfer

Secure Multi-Party Computation

e Recap
o we've shown any boolean function can be securely computed
o constraints - two actors, passive adversaries

e Goldreich, Micali,and Widgerson proved completeness for n actors
o canhave malicious adversaries provided at least n/2 are honest

Works Cited

A. C.Yao, “Protocols for Secure Computations,” in SFCS ‘82 Proceedings of the 23rd Annual Symposium on Foundations of
Computer Science, 1982, pp. 160-164.

O. Goldreich, S. Micali, and A. Wigderson, “How to Play ANY Mental Game,” in STOC '87 Proceedings of the nineteenth
annual ACM Symposium on Theory of Computing, 1987, pp. 218-229.

M. J. Fischer, “Lecture Notes: CPSC 461b: Foundations of Cryptography.” Yale University Department of Computer Science,
2009.

