Introduction to Secure Multi-Party Computation

Ryan Moreno

Secure Multi-Party Computation

- Requirements
- n actors with private data $x_{1}, x_{2}, \ldots x_{n}$
- compute $\mathrm{F}\left(x_{1}, x_{2}, \ldots x_{n}\right)$
- don't leak any other information
- no trusted third parties
- Applications
- Distributed voting
- Private bidding and auctions

The Millionaire Problem - Yao

Do you have more money?

- Don't leak any other information
- No trusted third-party

[^0]

The Millionaire Problem - Yao

Does Alice have more money? Effectively: $A \geq B$

- Assume $A, B \in\{1,2, \ldots 10\}$
- Alice has public RSA key (e, n) and private (d, n)

Alice, \$A Million

Bob, \$B Million

The Millionaire Problem - Yao

- choose random x such that $|x|=|n|$
- $c=$ encrypt (x) using Alice's public key (e, n)
- $m=c-B+1 \bmod n$

Alice, \$A Million

Bob, \$B Million

The Millionaire Problem - Yao

- choose random x such that $|x|=|n|$
- $\quad c=$ encrypt (x) using Alice's public key (e, n)
- $m=c-B+1 \bmod n$

Alice, \$A Million

Bob, \$B Million

The Millionaire Problem - Yao

- choose random x such that $|x|=|n|$
- $\quad c=$ encrypt(x) using Alice's public key (e, n)
- $m=c-B+1 \bmod n$
$\leftarrow m$ looks random
- $\quad X_{i}=\operatorname{decrypt}(m+i-1), i \in[1,10] X_{B}=x$, but all X_{i} look random

Alice, \$A Million

Bob, \$B Million

The Millionaire Problem - Yao

- choose random x such that $|x|=|n|$
- $\quad c=$ encrypt (x) using Alice's public key (e, n)
- $m=c-B+1 \bmod n$
$\leftarrow m$ looks random
- $\quad X_{i}=\operatorname{decrypt}(m+i-1), i \in[1,10] X_{B}=x$, but all x_{i} look random

Alice, \$A Million

- choose a random prime p such that $|p|=|n| / 2$ and calculate $X_{i} \bmod p X_{i} \bmod p$ all look random
- $W_{i}=\left(X_{i} \bmod p+(i>A)\right) \bmod p, i \in[1,10]$ add $1(\bmod p)$ iff i is greater than Alice's wealth

Bob, \$B Million

The Millionaire Problem - Yao

- choose random x such that $|x|=|n|$
- $\quad c=$ encrypt (x) using Alice's public key (e, n)
- $m=c-B+1 \bmod n$
$\leftarrow m$ looks random
- $\quad X_{i}=\operatorname{decrypt}(m+i-1), i \in[1,10] X_{B}=x$, but all X_{i} look random

Alice, \$A Million

- choose a random prime p such that $|p|=|n| / 2$ and calculate $X_{i} \bmod p X_{i} \bmod p$ all look random
- $W_{i}=\left(X_{i} \bmod p+(i>A)\right) \bmod p, i \in[1,10]$ add $1(\bmod p)$ iff i is greater than Alice wealth

$$
p, W_{1} \ldots W_{10} \rightarrow
$$

1 was added to W_{B} iff $B>A$ W_{i} looks random and Bob can't tell when 1 was added

Bob, \$B Million

The Millionaire Problem - Yao

- choose random x such that $|x|=|n|$
- $\quad c=$ encrypt(x) using Alice's public key (e, n)
- $m=c-B+1 \bmod n$
$\leftarrow m$ looks random
- $\quad X_{i}=\operatorname{decrypt}(m+i-1), i \in[1,10] X_{B}=x$, but all X_{i} look random
- choose a random prime p such that $|p|=|n| / 2$ and calculate $X_{i} \bmod p X_{i} \bmod p$ all look random

Alice, \$A Million

- $W_{i}=\left(X_{i} \bmod p+(i>A)\right) \bmod p, i \in[1,10]$ add $1(\bmod p)$ iff i is greater than Alice's wealth

1 was added to W_{B} iff $B>A$

$$
p, W_{1} \ldots W_{10} \rightarrow
$$

W_{i} looks random and Bob can't tell when 1 was added

- result $=\left(W_{B} \equiv x(\bmod p)\right)$

Bob, \$B Million

The Millionaire Problem - Yao

- choose random x such that $|x|=|n|$
- $\quad c=$ encrypt(x) using Alice's public key (e, n)
- $m=c-B+1 \bmod n$
$\leftarrow m$ looks random
- $\quad X_{i}=\operatorname{decrypt}(m+i-1), i \in[1,10] X_{B}=x$, but all X_{i} look random
- choose a random prime p such that $|p|=|n| / 2$ and calculate $X_{i} \bmod p X_{i} \bmod p$ all look random

Alice, \$A Million

- $W_{i}=\left(X_{i} \bmod p+(i>A)\right) \bmod p, i \in[1,10]$ add $1(\bmod p)$ iff i is greater than Alice's wealth

1 was added to W_{B} iff $B>A$

$$
p, W_{1} \ldots W_{10} \rightarrow
$$

W_{i} looks random and Bob can't tell when 1 was added

$$
\begin{aligned}
& \text { result }=\left(W_{B} \equiv x(\bmod p)\right) \\
& \quad \text { If } A \geq B \text {, then } 0 \text { added, so } \\
& W_{B}=X_{B} \bmod p=x \bmod p \quad \text { Bob, } \$ B \text { Million } \\
& \leftarrow \text { result } 1 \text { iff } A \geq B
\end{aligned}
$$

The Millionaire Problem - Yao

- Correctness
- result is 1 iff $A \geq B$
- Security
- Alice learns random number m
- Bob learns random prime p
- Bob learns $W_{1} \ldots W_{10}$
- Bob can't calculate X_{i} except when $i=B$, so Bob can't calculate other W_{i}
- Bob can't recover X_{i} from W_{i} due to loss of information with $\bmod p$

The Millionaire Problem - Yao

- Assumptions
- Actors will follow protocol
- Actors won't lie about wealth
- Actors won't broadcast their wealth
- Ideal vs. Real World
- Ideal has a trusted third-party
- Real world must mimic ideal level of security

Oblivious Transfer (OT)

- Alice offers n messages, Bob selects and receives one
- Alice doesn't know which Bob chose
- Bob doesn't know the other messages
- Without loss of generality, we will assume single-bit messages

Alice, has $b_{1}, b_{2}, \ldots b_{n}$

Bob, wants b_{i}

OT - Goldreich, Micali, Widgerson

- choose $\left(f, f^{-1}, B_{f}\right)$ random trapdoor permutation (function, inverse function, hard-core bit)

$$
f, B_{f} \rightarrow
$$

OT - Goldreich, Micali, Widgerson

- choose $\left(f, f^{-1}, B_{f}\right)$ random trapdoor permutation
(function, inverse function, hard-core bit)

$$
f, B_{f} \rightarrow
$$

- choose random $x_{1}, x_{2}, \ldots x_{n}$
- $\left(y_{1}, y_{2}, \ldots y_{i}, \ldots y_{n}\right)=\left(x_{1}, x_{2}, \ldots f\left(x_{i}\right), \ldots x_{n}\right)$ $\leftarrow\left(y_{1}, \ldots y_{n}\right)$ looks random

OT - Goldreich, Micali, Widgerson

- choose (f, f^{-1}, B_{f}) random trapdoor permutation (function, inverse function, hard-core bit)

$$
f, B_{f} \rightarrow
$$

- choose random $x_{1}, x_{2}, \ldots x_{n}$

- compute $\left(c_{1}, \ldots c_{n}\right)=\left(B_{f}\left(f^{-1}\left(y_{1}\right)\right), \ldots B_{f}\left(f^{-1}\left(y_{n}\right)\right)\right) c_{i}=B_{f}\left(x_{i}\right)$
- compute $\left(d_{1}, \ldots d_{n}\right)=\left(b_{1} \oplus c_{1}, \ldots b_{n} \oplus c_{n}\right) d_{i}=b_{i} \oplus X_{i}$
looks random $\left(d_{1}, \ldots d_{n}\right) \rightarrow$

OT - Goldreich, Micali, Widgerson

- choose (f, f^{-1}, B_{f}) random trapdoor permutation (function, inverse function, hard-core bit)

$$
f, B_{f} \rightarrow
$$

- choose random $x_{1}, x_{2}, \ldots x_{n}$
- $\left(y_{1}, y_{2}, \ldots y_{i}, \ldots y_{n}\right)=\left(x_{1}, x_{2}, \ldots f\left(x_{i}\right), \ldots x_{n}\right)$
$\leftarrow\left(y_{1}, \ldots y_{n}\right)$ looks random
- compute $\left(c_{1}, \ldots c_{n}\right)=\left(B_{f}\left(f^{-1}\left(y_{1}\right)\right), \ldots B_{f}\left(f^{-1}\left(y_{n}\right)\right)\right) c_{i}=x_{i}$
- compute $\left(d_{1}, \ldots d_{n}\right)=\left(b_{1} \oplus c_{1}, \ldots b_{n} \oplus c_{n}\right) d_{i}=b_{i} \oplus x_{i}$ looks random $\left(d_{1}, \ldots d_{n}\right) \rightarrow$

OT - Goldreich, Micali, Widgerson

- Correctness
- result is b_{i}
- Security
- Alice learns $\left(y_{1}, \ldots y_{n}\right)$ which all look random
- Alice doesn't learn anything about i
- Bob learns $\left(d_{1}, \ldots d_{n}\right)$ which all look random except d_{i}
- Bob can't calculate any other b_{j}
- $d_{j}=b_{j} \oplus c_{j}$
- $\quad c_{j}$ calculated with inverse of trapdoor function
- xor with random loses all information

OT used for simple SMPC

- Alice and Bob have private inputs x and y respectively
- Want to compute boolean function $F(x, y)$

Alice, has x

OT used for simple SMPC

- Alice computes $b_{0}=F(x, 0)$ and $b_{1}=F(x, 1)$
- Bob uses OT to learn $b_{y}=F(x, y)$
- Bob shares the answer with Alice

Bob, has y

OT used for simple SMPC

- Alice computes $b_{0}=F(x, 0)$ and $b_{1}=F(x, 1)$
- Bob uses OT to learn $b_{y}=F(x, y)$
- Bob shares the answer with Alice

- Consider $F(x, y)=x \wedge y$
- Alice has $x=0: F(0, y)$ doesn't leak y
- Bob has $y=0: F(x, 0)$ doesn't leak x
- Alice has $x=1: F(1, y)$ leaks y
- Holds up to security of ideal world

Bob, has y

OT used for simple SMPC

- Alice computes $b_{0}=F(x, 0)$ and $b_{1}=F(x, 1)$
- Bob uses OT to learn $b_{y}=F(x, y)$
- Bob shares the answer with Alice

- Single-gate, single-bit boolean functions only
- Otherwise Alice would gain information at each individual OT

OT used for SMPC

- Alice and Bob have private inputs x and y respectively
- Want to compute boolean function $\mathrm{F}(x, y)$ where F consists of multiple gates and x and y are multiple bits
- Each step will consider a single gate with single-bit inputs $f(a, b)$ with the output encoded

Alice, has x

OT used for SMPC

\leftarrow table with rows permuted and no private values
$\leftarrow \mathrm{D}_{3}$ or D_{4} dependent on b

- create encryption schemes $\mathrm{S}_{1}=\left(\mathrm{E}_{1}, \mathrm{D}_{1}\right)$ to S_{6}
- randomly select p, s, m, and u
- randomly assign S_{3} and S_{4} complimentary bits
- randomly assign S_{5} and S_{6} complimentary bits
- create table for $f(a, b)$

Alice, has a

Example: $\mathrm{F}(a, b)=a \wedge b$
$p \oplus q=D_{5} \quad(0 \wedge 0=0)$
$s \oplus t=D_{5} \quad(0 \wedge 1=0)$
$m \oplus n=D_{5} \quad(1 \wedge 0=0)$
$u \oplus v=D_{6} \quad(1 \wedge 1=1)$

S_{1}	$E_{1}(p)$	S_{3}	$E_{3}(q)$
S_{1}	$E_{1}(s)$	S_{4}	$E_{4}(t)$
S_{2}	$E_{2}(m)$	S_{3}	$E_{3}(n)$
S_{2}	$E_{2}(u)$	S_{4}	$E_{4}(v)$

Bob, has b

OT used for SMPC

- create encryption schemes and table

OT used for SMPC

- use the pair of decryption keys to decode the pair of values k, l in a row
- $D_{i}=k \oplus \mid D_{i}=D_{5}$ or D_{6}
- result $=0$ if $D_{5}, 1$ otherwise result $=f(a, b)$

$$
\text { result } \rightarrow
$$

Alice, has a

\leftarrow table with rows permuted and no private values
$\leftarrow \mathrm{D}_{3}$ or D_{4} dependent on b
$\leftarrow \mathrm{D}_{1}$ or D_{2} sent using OT dependent on a

$$
\begin{aligned}
& a=0: \mathrm{S}_{1} \\
& a=1: \mathrm{S}_{2}
\end{aligned}
$$ \rightarrow

Bob, has b

- combine single-bit, single-gate steps
- keep intermediate output assignments private
- Use intermediate outputs as inputs

OT used for SMPC

OT used for SMPC

- Correctness
- result of each step is $f(x, y)$
- final result is $\mathrm{F}(a, b)$
- any boolean function can be composed with Λ and \neg
- Security
- Alice learns either D_{3} or D_{4}, uncorrelated with b
- Alice learns only D_{1} or D_{2}, according to a
- Alice can only compute either D_{5} or D_{6} with both k and I
- xor with random renders partial information useless
- Alice doesn't learn intermediate outputs because correlation is private
- Bob learns only the final result
- Bob doesn't learn intermediate outputs because no information transfer

Secure Multi-Party Computation

- Recap
- we've shown any boolean function can be securely computed
- constraints - two actors, passive adversaries
- Goldreich, Micali, and Widgerson proved completeness for n actors
- can have malicious adversaries provided at least $n / 2$ are honest

Works Cited

A. C. Yao, "Protocols for Secure Computations," in SFCS '82 Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, 1982, pp. 160-164.
O. Goldreich, S. Micali, and A. Wigderson, "How to Play ANY Mental Game," in STOC '87 Proceedings of the nineteenth annual ACM Symposium on Theory of Computing, 1987, pp. 218-229.
M. J. Fischer, "Lecture Notes: CPSC 461b: Foundations of Cryptography." Yale University Department of Computer Science, 2009.

[^0]: you, a multi-millionaire

