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Secure Multi-Party Computation

● Requirements

○ n actors with private data x1, x2, … xn
○ compute F(x1, x2, … xn)

○ don’t leak any other information
○ no trusted third parties

● Applications
○ Distributed voting
○ Private bidding and auctions



The Millionaire Problem - Yao

you, a multi-millionaire me, also a multi-millionaire

Do you have more money?

● Don’t leak any other information

● No trusted third-party



The Millionaire Problem - Yao

Alice, $A Million Bob, $B Million

Does Alice have more money? Effectively: A ≥ B

● Assume A, B ∈ {1, 2, … 10}

● Alice has public RSA key (e, n) and private (d, n)



The Millionaire Problem - Yao

● choose random x such that |x| = |n|
● c = encrypt(x) using Alice’s public key (e, n)
● m = c - B + 1 mod n

Alice, $A Million Bob, $B Million



The Millionaire Problem - Yao

● choose random x such that |x| = |n|
● c = encrypt(x) using Alice’s public key (e, n)
● m = c - B + 1 mod n

← m  looks random

Alice, $A Million Bob, $B Million



The Millionaire Problem - Yao

● Xi  = decrypt(m + i - 1), i ∈ [1, 10]  XB = x, but all Xi look random

● choose random x such that |x| = |n|
● c = encrypt(x) using Alice’s public key (e, n)

● m = c - B + 1 mod n

← m  looks random

Alice, $A Million Bob, $B Million



The Millionaire Problem - Yao

● Xi  = decrypt(m + i - 1), i ∈ [1, 10]  XB = x, but all Xi look 

random
● choose a random prime p such that |p| = |n|/2 

and calculate Xi mod p  Xi mod p  all look random

● Wi = (Xi mod p + (i ﹥A)) mod p, i ∈ [1, 10]

add 1 (mod p) iff i is greater than Alice’s wealth

● choose random x such that |x| = |n|
● c = encrypt(x) using Alice’s public key (e, n)

● m = c - B + 1 mod n

← m  looks random

Alice, $A Million Bob, $B Million



The Millionaire Problem - Yao

● Xi  = decrypt(m + i - 1), i ∈ [1, 10]  XB = x, but all Xi look random

● choose a random prime p such that |p| = |n|/2 

and calculate Xi mod p  Xi mod p  all look random

● Wi = (Xi mod p + (i ﹥A)) mod p, i ∈ [1, 10]

add 1 (mod p) iff i is greater than Alice wealth

p, W1… W10→ 

● choose random x such that |x| = |n|
● c = encrypt(x) using Alice’s public key (e, n)

● m = c - B + 1 mod n

← m  looks random

 

1 was added to WB  iff B > A 

Wi  looks random and Bob can’t

 tell when 1 was added Alice, $A Million Bob, $B Million



The Millionaire Problem - Yao

● Xi  = decrypt(m + i - 1), i ∈ [1, 10]  XB = x, but all Xi look random

● choose a random prime p such that |p| = |n|/2 

and calculate Xi mod p  Xi mod p  all look random

● Wi = (Xi mod p + (i ﹥A)) mod p, i ∈ [1, 10]

add 1 (mod p) iff i is greater than Alice’s wealth

p, W1 … W10→ 

● choose random x such that |x| = |n|
● c = encrypt(x) using Alice’s public key (e, n)

● m = c - B + 1 mod n

← m  looks random

● result = (WB ≡ x (mod p))

 

1 was added to WB  iff B > A 

Wi  looks random and Bob can’t

 tell when 1 was added 

Alice, $A Million Bob, $B Million



The Millionaire Problem - Yao

● Xi  = decrypt(m + i - 1), i ∈ [1, 10]  XB = x, but all Xi look random

● choose a random prime p such that |p| = |n|/2 

and calculate Xi mod p  Xi mod p  all look random

● Wi = (Xi mod p + (i ﹥A)) mod p, i ∈ [1, 10]

add 1 (mod p) iff i is greater than Alice’s wealth

p, W1 … W10→ 

● choose random x such that |x| = |n|
● c = encrypt(x) using Alice’s public key (e, n)

● m = c - B + 1 mod n

← m  looks random

● result = (WB ≡ x (mod p))

If A ≥ B, then 0 added, so

WB  = XB mod p = x mod p
← result  1 iff A ≥ B

 

1 was added to WB  iff B > A 

Wi  looks random and Bob can’t

 tell when 1 was added 

Alice, $A Million Bob, $B Million



The Millionaire Problem - Yao

● Correctness
○ result is 1 iff A ≥ B

● Security
○ Alice learns random number m
○ Bob learns random prime p
○ Bob learns W1  … W10 

■ Bob can’t calculate Xi  except when i = B, so Bob can’t calculate other Wi 

■ Bob can’t recover Xi  from Wi  due to loss of information with mod p



The Millionaire Problem - Yao

● Assumptions
○ Actors will follow protocol
○ Actors won’t lie about wealth
○ Actors won’t broadcast their wealth

● Ideal vs. Real World
○ Ideal has a trusted third-party
○ Real world must mimic ideal level of security



● Alice offers n messages, Bob selects and receives one
○ Alice doesn’t know which Bob chose
○ Bob doesn’t know the other messages
○ Without loss of generality, we will assume single-bit messages

Oblivious Transfer (OT)

Alice, has b1, b2, … bn Bob, wants bi 



OT - Goldreich, Micali, Widgerson

Alice, has b1, b2, … bn Bob, wants  bi 

● choose (f, f -1, Bf )  random trapdoor permutation 

(function, inverse function, hard-core bit)

f, Bf → 



OT - Goldreich, Micali, Widgerson

Alice, has b1, b2, … bn Bob, wants  bi 

● choose (f, f -1, Bf )  random trapdoor permutation 

(function, inverse function, hard-core bit)

f, Bf → 

● choose random x1, x 2, … xn

● (y1, y2, … yi , … yn) = (x1, x2, … f(xi ), … xn)   

← (y1, … yn) looks random



OT - Goldreich, Micali, Widgerson

Alice, has b1, b2, … bn Bob, wants  bi 

● choose (f, f -1, Bf )  random trapdoor permutation 

(function, inverse function, hard-core bit)

f, Bf → 

● choose random x1, x 2, … xn

● (y1, y2, … yi , … yn) = (x1, x2, … f(xi ), … xn)   

← (y1, … yn) looks random

● compute  (c1, … cn) = (Bf( f -1(y1) ), … Bf( f -1(yn) ))  ci = Bf(xi)

● compute  (d1, … dn) = (b1⊕ c1, … bn ⊕ cn)   di = bi ⊕ xi

          looks random  (d1, … dn) →



OT - Goldreich, Micali, Widgerson

Alice, has b1, b2, … bn Bob, wants  bi 

● choose (f, f -1, Bf )  random trapdoor permutation 

(function, inverse function, hard-core bit)

f, Bf → 

● choose random x1, x 2, … xn

● (y1, y2, … yi , … yn) = (x1, x2, … f(xi ), … xn)   

← (y1, … yn) looks random

● compute  (c1, … cn) = (Bf( f -1(y1) ), … Bf( f -1(yn) ))  ci = xi

● compute  (d1, … dn) = (b1⊕ c1, … bn ⊕ cn)   di = bi ⊕ xi

          looks random  (d1, … dn) →

● result = di ⊕ xi   result = bi



OT - Goldreich, Micali, Widgerson

● Correctness

○ result is bi 

● Security
○ Alice learns (y1, ... yn ) which all look random
○ Alice doesn’t learn anything about i
○ Bob learns (d1, ... dn ) which all look random except di

○ Bob can’t calculate any other bj  
■ dj = bj ⊕ cj  
■ cj  calculated with inverse of trapdoor function
■ xor with random loses all information



OT used for simple SMPC

Alice, has x Bob, has  y

● Alice and Bob have private inputs x and y respectively

● Want to compute boolean function F(x, y)



OT used for simple SMPC

Alice, has x Bob, has  y

● Alice computes b0 = F(x, 0) and b1 = F(x, 1)

● Bob uses OT to learn by = F(x, y)

● Bob shares the answer with Alice



OT used for simple SMPC

Alice, has x Bob, has  y

● Alice computes b0 = F(x, 0) and b1 = F(x, 1)

● Bob uses OT to learn by = F(x, y)

● Bob shares the answer with Alice

● Consider F(x, y) =  x ∧ y
○ Alice has x = 0:   F(0, y) doesn’t leak y
○ Bob has y = 0:     F(x, 0) doesn’t leak x
○ Alice has x = 1:   F(1, y) leaks y
○ Holds up to security of ideal world



OT used for simple SMPC

Alice, has x Bob, has  y

● Alice computes b0 = F(x, 0) and b1 = F(x, 1)

● Bob uses OT to learn by = F(x, y)

● Bob shares the answer with Alice

● Single-gate, single-bit boolean functions only
○ Otherwise Alice would gain information at each individual OT



OT used for SMPC

Alice, has x Bob, has  y

● Alice and Bob have private inputs x and y respectively

● Want to compute boolean function F(x, y) where F consists of 

multiple gates and x and y are multiple bits
○ Each step will consider a single gate with single-bit inputs f(a, b) 

with the output encoded
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u ⊕ v = D
6

  (1 ∧ 1 = 1)
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OT used for SMPC

● create encryption schemes and table

← table with rows permuted and no private values
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● use the pair of decryption keys to decode 
the pair of values  k, l  in a row

● D
i
 = k ⊕ l   D

i 
= D
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 or D

6

● result = 0 if D
5

, 1 otherwise  result = f(a, b)

result →
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● combine single-bit, single-gate steps
○ keep intermediate output assignments private
○ Use intermediate outputs as inputs



OT used for SMPC

● Correctness
○ result of each step is f(x, y)

■ final result is F(a, b)
○ any boolean function can be composed with ∧ and ¬

● Security
○ Alice learns either D

3
 or D

4 
, uncorrelated with b

○ Alice learns only D
1

 or D
2 

, according to a
○ Alice can only compute either D

5 
 or D

6
 with both k and l

■ xor with random renders partial information useless
○ Alice doesn’t learn intermediate outputs because correlation is private
○ Bob learns only the final result
○ Bob doesn’t learn intermediate outputs because no information transfer



Secure Multi-Party Computation

● Recap
○ we’ve shown any boolean function can be securely computed
○ constraints - two actors, passive adversaries

● Goldreich, Micali, and Widgerson proved completeness for n actors
○ can have malicious adversaries provided at least n/2 are honest
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