
SECURE MULTI-PARTY COMPUTATION: GARBLED CIRCUITS

RYAN MORENO

1 Abstract
This paper presents Yao’s Garbled Circuit protocol to compute any boolean function F(a,b) where a and b are Alice and Bob’s private
inputs. Assuming Alice and Bob are honest, this protocol is guaranteed to produce the correct result without leaking any additional
information about a or b. Yao’s protocol is an example of Secure Multi-Party Computation, a process in which multiple parties with
private inputs collectively compute a function without the use of a third-party. Before presenting the Garbled Circuit protocol, this paper
introduces Secure Multi-Party Computation, explaining the canonical Millionaire Problem. We then examine Oblivious Transfer, a
necessary tool in Yao’s protocol.

2 Introduction
Secure Multi-Party Computation (SMPC) is the problem of computing a function F(x1,x2...xn) when the inputs are distributed among
n actors, each having a piece of private data xi. The function must be computed without using a third-party and without leaking any
additional information about the actors’ inputs. To formalize the notion of security, we will consider real world security and ideal world
security. In the ideal world, we are allowed to use a trusted third-party to compute F. The SMPC protocol is considered the real world and
is expected to match ideal security. This means that the SMPC protocol can leak any information about the actors’ inputs that would
have been leaked by simply learning the result of F. For example, consider the function F(a,b) = a∧b. If Alice has input a = 1, then
Bob’s input b is leaked by the result of F(a,b); if the result is 1, we know Bob’s input was 1, and if the result is 0, we know his input was
0. Even in the ideal world, Bob’s input would be leaked by the result of the computation, so the SMPC protocol is allowed to leak this
information as well. As a more abstract example, Alice could choose to leak her input by simply telling Bob what her input is. Because
this could occur in the ideal world of a trusted third-party, the SMPC protocol is not expected to avoid this type of self-sabotaging leak.

Another factor to consider is the actors’ level of honesty. The simplest level of security is passive security, which assumes that the actors
will follow the protocol and not lie about intermediate results. Adversaries are expected to use leaked information to compute other actors’
inputs, but we assume they won’t actively cheat the protocol. This is a naïve assumption because in the real world corrupted parties might
be willing to cheat the protocol. Malicious security assumes that the actors are willing to cheat the protocol, so SMPC protocols with
malicious security must return the correct result or notify the actors if one of the individuals has cheated. In between these two levels
of security is covert security, which ensures that if an actor diverges from the protocol, they will be caught with high probability. This
is often more efficient than malicious security, and in practice can force adversaries to act passively due to outside economic or social
incentive to not get caught cheating. In this paper, we only consider passive security, assuming the actors behave honestly.

This paper presents Yao’s Garbled Circuit protocol to compute any boolean function on two parties’ private inputs. In order to provide a
gentle introduction to SMPC, we start by considering a solution to the Millionaire Problem, in which two millionaires want to know
who has more money without releasing additional information about their wealth. Then we will examine Oblivious Transfer, a protocol
allowing Bob to select one of Alice’s many messages in such a way that Alice doesn’t know which message Bob selected and Bob doesn’t
learn any of Alice’s other messages. Oblivious Transfer is a necessary tool in the Garbled Circuit protocol. Finally, we will examine the
Garbled Circuit protcol. In this protocol, Bob creates a computation table allowing Alice to calculate an arbitrary boolean function on
their private inputs without learning any intermediate results.

3 The Millionaire Problem
3.1 Problem Description
Yao introduced the idea of SMPC by presenting the Millionaire Problem. Consider two millionaires who want to know who has more
money without releasing additional information about their wealth. Effectively, we need to compute A≥ B. For example, let’s say that
Alice has wealth A = $7 million and Bob has wealth B = $5 million. Alice and Bob need to learn that Alice has more money. However,
it’s imperative that Alice learn nothing more about Bob’s wealth than that he has less than $7 million. Likewise, Bob must learn nothing
more about Alice’s wealth than that she has more than $5 million. Yao describes a method for solving this problem, detailed below [1].

For simplicity, we will assume that A, B ∈ [1,10]. We will also assume that Alice has a public key (e, n) and a private key (d, n), which
she can compute using the methods of RSA [2].

3.2 Protocol
To start the process, Bob chooses a random number x such that |x|= |n| (this will be relevant later) and encrypts x using Alice’s public key
(e, n), resulting in a new value c = encrypt(x). Bob then computes m = (c−B+1) mod n and sends m to Alice. Since the x that Bob
originally chose was random, m looks random to Alice.

Secure Multi-Party Computation: Garbled Circuits MORENO

Alice now computes all possible options for x by trying every possible value of Bob’s wealth B (which we restricted to [1,10]). Formally,
Alice computes xi = decrypt(m+ i−1) ∀i ∈ [1,10]. Note that xB = decrypt(m+B−1) = decrypt(c−B+1+B−1) = decrypt(c) = x,
the original random value that Bob chose. However, to Alice, all xi look random. Additionally, to Bob all xi except xB look random since
Bob doesn’t have access to Alice’s decryption key and isn’t able to explore the encrypted space.

Next, Alice chooses a random prime p such that |p|= |n|/2. She calculates wi = xi mod p for each value xi. Because p is half the length
of xi, taking xi mod p obfuscates the original values of xi. This is important because Alice will be sending all values of wi to Bob. If
Alice sent back xi directly, she would give Bob additional information about her private encryption key because the values of xi represent
Alice exploring the encryption space. Since Bob doesn’t have access to Alice’s decryption key, he shouldn’t be able to walk around the
encryption space and then decode the values.

Finally, Alice adds 1 to each value wi where i > A. In this way, Alice has bumped each value of i that is greater than her own wealth. Alice
sends p and all values of wi to Bob. Since all values wi look random to Bob except for wB, Bob can’t tell which values Alice bumped
except for wB, so he doesn’t learn any information besides whether he has more money than Alice. To see if he has more money than
Alice, Bob checks if wB = x mod p where x is his original random number. If the values are equal, then Alice didn’t bump the value wB,
so we know Bob doesn’t have more money than Alice, meaning A≥ B. If the values are not equal, then Alice bumped the value wB, so we
know Bob has more money than Alice, meaning B > A. Bob sends the result of the exchange back to Alice, so both know who has more
money.

3.3 Correctness and Security
The protocol is correct because A≥ B iff wB = x mod p, so Bob is able to tell exactly who has more money. As for security, Alice only
learns m which looks random to Alice since Bob computes it based on a random number x. So, Alice learns no information from this
exchange. Bob learns wi ∀i ∈ [1,10]. This information doesn’t tell Bob anything extra about Alice’s wealth. Since Bob can’t walk around
the encryption space, he can’t calculate xi when i 6= B. Therefore, he can’t calculate the original values of wi when i 6= B, so he can’t tell
which values of wi Alice bumped. Additionally, Bob doesn’t gain any information about Alice’s private key from walking around the
encryption space because he can’t recover xi from wi due to the loss of information with mod p.

4 Oblivious Transfer
4.1 Problem Description
Oblivious Transfer (OT), developed by Even, Goldreich, and Lempel, is an important piece of many SMPC protocols [3]. The goal of OT
is that Alice offers n different messages, and Bob selects and receives one of them. After the transfer process, Alice shouldn’t know which
message Bob chose, and Bob shouldn’t gain any information about the other messages. Without loss of generality, we can consider each
message to be a single bit. If Alice and Bob wanted to transfer longer messages, they could repeat the OT protocol for each bit.

OT makes the Millionaire Problem trivial because Alice can simply offer Bob 10 messages, one corresponding to each of possible value
of Bob’s wealth. Each message will contain a 0 or a 1, corresponding to “I’m wealthier (A≥ B)” or “You’re wealthier (A < B). Shortly,
we will see a more interesting application for OT.

4.2 Protocol
In the OT protocol, Alice first chooses a random trapdoor permutation consisting of a function, inverse function, and hard-core bit,
{ f , f−1,B f }. According to Diffie and Hellman, Alice can create a random trapdoor permutation such that given the function, it is
infeasible to compute the inverse function [4]. Alice sends f and B f to Bob, but keeps f−1 private. Bob chooses n random numbers x1 ...
xn corresponding to the n messages Alice is offering. Bob computes f (xi) for whichever message i he would like to receive. He then
sends y1...yn to Alice, such that {y1,y2, ...yi, ...yn}= {x1,x2, ... f (xi), ...xn}. To Alice, these values look completely random. In particular,
F(xi) still looks random because f is a permutation, so F(random) yields a random value over the same domain.

Alice takes the hardcore bit of the inverse function of each value Bob sends such that {c1...cn}= {B f (f−1(y1))...B f (f−1(yn))}. Notably,
ci = B f (xi), the hard-core bit of Bob’s original random number. If Bob were to see the values {c1...cn}, they would all look random
except for ci. This is because Alice kept the inverse function of her random trapdoor permutation private, and it is impractical for Bob
to compute the inverse function. Alice then computes {d1...dn}= {b1⊕ c1...bn⊕ cn} for each message b she is offering. Note that we
originally restricted Alice’s messages to be single-bit. We made this restriction so she can perform the xor of the hard-core bits she
calculated with her messages. At this point, di = bi⊕ xi. To Bob, all d values except di look random because the xor function preserves
the randomness of the c values. Alice sends the values {d1...dn} to Bob, and Bob gets the ith message by computing di⊕ xi = bi.

4.3 Correctness and Security
As described in the protocol section, Bob ends up with the message bi that he was expecting. Because Alice uses a random trapdoor
permutation, all of the other d values Bob receives look random to him, so he can’t calculate any of the other messages Alice offers.
Alice doesn’t gain any information about which message Bob chose because the only information she receives is {y1...yn} which all look
random to her. Even though Bob sent yi = f (xi), f preserves randomness, so even with infinite computing power, Alice couldn’t detect i.

It’s worth noting that the security of this protocol depends on Bob being honest. If Bob wanted to decrypt all of Alice’s messages instead
of just one, he could cheat by computing {y1...yn}= { f (x1)... f (x2)}.

2

Secure Multi-Party Computation: Garbled Circuits MORENO

5 Garbled Circuits
5.1 Problem Description
The culmination of this paper is a description of Yao’s protocol to compute any boolean function F(a,b) where Alice knows a, Bob
knows b, and they both want to keep their inputs private. To present the basic idea of the protocol, consider the computation of F(a,b),
a single-bit, single-gate boolean function. Bob can simply compute x0 = F(0,b) and x1 = F(1,b). Using OT, Alice chooses to learn
xa = F(a,b) and shares the answer with Bob. This may seem trivial, but consider the computation of F(a,b) = a∧b. If Bob has b = 0, then
calculating F(a,0) = a∧0 = 0 doesn’t leak any information about a. On the other hand, if Bob has 1, then computing F(a,1) = a∧1 = a
leaks a completely. However, this isn’t a problem for this protocol, because it holds up to the security of the ideal world. Even if Alice
and Bob passed their values to a trusted third-party to calculate F(a,b), simply knowing the answer to F(a,1) = a would leak a to Bob.

Unfortunately, this simple example doesn’t scale to multiple bits or multiple gates because Alice and Bob would have to perform OT
for each gate, leaking information about the output of each intermediate gate to Alice. To resolve this problem, we will keep all of the
intermediate values encrypted.

5.2 Protocol
Initially, we will consider Alice and Bob computing a single-bit, single-gate function where the outputs are encoded. First, Bob creates
the table shown in Figure 1. To fill in the table, Bob creates encryption schemes S1 = (E1,D1)...S6 = (E6,D6) and selects random values
p,s,m, and u. In the table Bob creates, each of Alice and Bob’s input values correspond to a specific encryption scheme (for example, in
Figure 1, a = 0 corresponds to S1). Note that S3 and S4 are assigned to Bob’s possible input bits randomly, meaning S3 is assigned to
0 with a probability of 1/2, and S4 is assigned the other value. Likewise, S5 and S6 are assigned to the possible output bits randomly.
Alice will be given the decryption keys for the two encryption schemes corresponding to her input and Bob’s input. Each row of the table
represents an input pair (a,b). For example, row 2 of Figure 1 corresponds to a = 0 and b = 1. With access to D1, corresponding to a = 0
and D4, corresponding to b = 1, Alice would be able to decrypt the values s and t. We want row 2 to correspond to an output of 0 or 1
depending on what gate we’re considering. For example, if the function is F(a,b) = a∧b, then we want row 2 to correspond to an output
of F(0,1) = 0∧1 = 0, which has been assigned S5. When Bob creates the table, he’ll define t such that s⊕ t = D5. This way, Alice will
get the decryption key for S5 iff she has s and t. Bob creates the table in this way, assigning q, t,n, and v so that each row corresponds to
the appropriate output based on the boolean gate in question. See Table 1 for an example set of assignments.

Figure 1: Computation table of a single-bit,
single-gate boolean function

(blue represents private to Bob)

Alice Bob output
a = 0: E1(p) b = 0: E3(q) output 0: p⊕q = D5
a = 0: E1(s) b = 1: E4(t) output 0: s⊕ t = D5
a = 1: E2(m) b = 0: E3(n) output 0: m⊕n = D5
a = 1: E2(u) b = 1: E4(v) output 1: u⊕ v = D6

Table 1: Example assignments for F(a,b) = a∧b

Now that Bob has created the table, he permutes the rows randomly and sends it to Alice, keeping his inputs and the outputs private. Bob
also sends D3 or D4 according to his input. Finally, Alice chooses either D1 or D2 (according to her input) using OT. Now Alice is able
to use the two decryption keys to decrypt the pair of private values k, l in the row corresponding to her and Bob’s input. Finally, she
computes Di = k⊕ l, which is either D5 or D6 depending on the gate in question. Note that at this point Alice has a new decryption key
D5 or D6, but doesn’t know what output (0 or 1) this corresponds to. Even though Alice can decrypt two other private values, these private
values are from different rows, so she only gets half of the information necessary to compute the other decryption key, D6 or D5. This
partial information is rendered useless because the output decryption keys are calculated using xor with another random, private value.

3

Secure Multi-Party Computation: Garbled Circuits MORENO

The point of keeping the output values private is that we can now link multiple gates together as in Figure 2 so that Alice can compute a
large boolean function without learning intermediate results. Note that although Alice can’t know which output value (0 or 1) she got
from the first gate, she needs to know which decryption key she got (D5 or D6) so that she knows which row in the second table to decrypt.
This can be accomplished by encoding the sentence "You got decryption key 5!!" using E5 and the sentence "You got decryption key 6!!"
using E6. If Bob includes these encoded sentences with the table, then Alice can easily check which decryption key she got. She can then
use the decryption key she received from the first table (corresponding to the first gate of the boolean function) as input to the second table
(corresponding to the second gate of the boolean function) without Bob knowing which key she received. If she needs Bob’s input to
compute the second gate, she can get the new decryption key for the second table using OT. These tables can be strung together as many
times as necessary in order to compute an arbitrarily large boolean function on inputs with many bits. When creating the table, Bob leaves
the outputs of the final table unencoded. This way, Alice learns the output to the entire boolean function and can share the result with Bob.

Figure 2: Computation table of a multi-bit, multi-gate boolean function
(blue represents private to Bob)

5.3 Correctness and Security
Any boolean function can be composed of ∧ and ∨ gates on single bits. So, we can string together tables such that the final result of the
protocol is F(a,b) for any boolean function F. During the protocol, Alice learns either D3 or D4, but this is uncorrelated with Bob’s input.
She learns only D1 or D2 according to her input. Using these values she can compute either D5 or D6, but cannot compute the other value
because it is obfuscated by the xor function. Because the relation between the intermediate output bits and the output decryption keys are
unknown to Alice, she doesn’t learn the intermediate results of individual gates within the boolean function. Further, Alice only transfers
the final answer to Bob, so he also doesn’t learn any intermediate results. By following this protocol, Alice and Bob are able to jointly
compute any boolean function F(a,b) without leaking any additional information about their inputs.

6 Discussion
6.1 Open Problems
An interesting area of research related to SMPC is communication complexity. In the context of SMPC, communication complexity
asks what amount of communication overhead is necessary for secure computation. Current SMPC protocols for more than two parties
can require exponential communication relative to the input length [7]. This exponential blow-up occurs because the protocols rely on
representing the function they want to compute as a circuit, and some functions require exponentially large circuits. There is currently a
large gap between the known lower-bounds of communication complexity (the minimum communication we know is required) and the
known upper-bounds (the minimum amount of communication we can currently achieve) [7]. It will take further complexity research to
reduce this gap and converge on the communication overhead strictly necessary for secure computation.

6.2 Applications
SMPC has practical applications outside of theoretical research. For example, consider voting. In the United States, we each cast our
individual votes by giving them to a trusted third-party – the government – who computes which candidate wins. However, the majority of
Americans believe there is significant election fraud, suggesting that we may not have a trusted third party [5]. Although the protocol
presented in this paper doesn’t scale well for computing an election, there are practical SMPC protocols to correctly compute the outcome
of an election without relying on a trusted third-party [6].

Private bidding and auctions is another situation that lends itself to SMPC. Individual participants provide input in the form of how
much they are willing to bid for an item. The goal is to compute who won the item without releasing information about how much any
participant offered to pay. This is similar to the Millionaire Problem, except that there are more parties involved. Using SMPC, private
auctions can be accomplished without releasing sensitive data to a third-party. There are many other practical applications; anything that
involves using a third-party to compute a result given sensitive participant data is a good candidate for SMPC.

4

Secure Multi-Party Computation: Garbled Circuits MORENO

7 References
[1] A. C. Yao, “Protocols for secure computations,” SFCS ’82 Proceedings of the 23rd Annual Symposium on Foundations of Computer

Science, pp. 160–164, 1982.
[2] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,” Commun. ACM,

vol. 21, no. 2, pp. 120–126, Feb. 1978.
[3] S. Even, O. Goldreich, and A. Lempel, “A randomized protocol for signing contracts,” Commun. ACM, vol. 28, no. 6, pp. 637–647,

Jun. 1985.
[4] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Trans. Inf. Theor., vol. 22, no. 6, pp. 644–654, Sep. 2006.
[5] M. Rourke, “Views on the american election process and perceptions of voter fraud,” The Associated Press-NORC Center for Public

Affairs Research, 2016.
[6] J. Bermúdez, “A practical multi-party computation algorithm for a secure distributed online voting system,” 2018.
[7] V. Vaikuntanathan, “Some open problems in information-theoretic cryptography,” 37th IARCS Annual Conference on Foundations

of Software Technology and Theoretical Computer Science (FSTTCS 2017), vol. 93, 5:1–5:7, 2018.

5

	Abstract
	Introduction
	The Millionaire Problem
	Problem Description
	Protocol
	Correctness and Security

	Oblivious Transfer
	Problem Description
	Protocol
	Correctness and Security

	Garbled Circuits
	Problem Description
	Protocol
	Correctness and Security

	Discussion
	Open Problems
	Applications

	References

