
GÖDEL’S INCOMPLETENESS THEOREM

RYAN MORENO

1 Background

1.1 Overview

Gödel’s Incompleteness Theorem proves that every consistent mathematic system has statements which are true but
cannot be proven within the system. It is also shown that the consistency of any mathematic system cannot be proven
within that system. In order to understand the nuances of Gödel’s proof, it is best to have the outline in mind.

First, Gödel creates a one-to-one mapping between natural numbers and mathematical expressions, providing a unique
identifier for each mathematical expression. It is important to note that the identifier for each mathematical expression
is an integer that mathematical expressions can act on. A key point in Gödel’s paper is the ability to mirror statements
about mathematical expressions (such as “the sequence of formulas F1, F2 . . . Fn−1 is a proof schema for the formula
Fn”) into the arithmetic system.

The heart of Gödel’s argument is defining a formula G that states “formula G is not provable.” It is shown that G is
provable iff ¬G is provable. Of course, if both G and ¬G were provable, this would imply the inconsistency of the
arithmetic system. So, if the arithmetic system is consistent, then G cannot be proven true or false, meaning that G is
undecidable. Despite being unprovable within the arithmetic system, G is true. This follows directly from the definition
of G, which states “formula G is not provable.” This means that if the arithmetic system is consistent, then there is
a true statement which cannot be proven within the system. Finally, Gödel shows that the statement “the arithmetic
system is consistent” is not provable within the arithmetic system.

Gödel extends his findings to every mathematic system, proving that every consistent mathematic system has true
statements which cannot be proven within the system and that the consistency of the mathematic system is unprovable.

1.2 Definitions

1.2.1 Formal Axiomatic Systems

A formal axiomatic system is a formally defined set of derivable theorems. The system consists of a set of basic
signs, a set of axioms, and a set of rules of inference. The basic signs make up the alphabet of the system. The set
of axioms are the statements which are assumed to be universally true. There can be infinite axioms if a schema
is used, such as “Every formula derived by substituting any formula for p in the following: p ∨ p =⇒ p.” The
rules of inference are the operations that manipulate axioms and theorems to create new theorems. The rules of
inference are assumed to be truth-preserving. In this way, the formal axiomatic system consists of the axioms and
all of the theorems derivable using the rules of inference.

1.2.2 Incompleteness

A formal axiomatic system is said to be complete if every true statement definable in the language of the system is
a theorem of the system. This means that every true statement can be derived from the axioms of the system by
the rules of inference. An incomplete system is one in which there is a true statement that can be defined in the
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language of the system but is not a theorem of the system, meaning that the statement cannot be derived from the
axioms, and therefore cannot be proven within the system.

1.2.3 ω-consistency

A simply consistent system is one in which there are no explicit contradictions. This means that there is no formula
H for which both H and ¬H can be proven within the system. Simple consistency ignores the logical contradiction
derived through induction if ∀x (the formula H(x) is provable) and the formula ¬(∀xH(x)) is provable. If this
type of contradiction is present in a system, it is ω-inconsistent. An ω-consistent system is a simply consistent
system that is not ω-inconsistent.

1.2.4 Metamathematics

Mathematical statements are ones that can be written in a mathematic system. Some simple examples are F1:
x = 1, F2: y = x + 1, and F3: F = 2. Metamathematical statements are English statements about these
mathematical statements. For example, the following statement is metamathematical, “the sequence of formulas
F1, F2 is a proof schema for the formula F3.” A useful analogy is that mathematical statements are like the
positions of chess pieces on a board while metamathematical statements are claims based on inferences from the
current positions, such as the number of opening moves in a chess game or which player is currently check-mated.
Note that these inferences are made by assigning a specific meaning to the chess positions that aren’t defined
within the positions themselves. Likewise, metamathematical statements consider a string and assign it meaning
by interpreting it as a mathematical formula.

1.2.5 Primitive Recursive Formulas

Primitive recursive formulas are formulas that are exclusively defined by simple arithmetical relationships, logical
relationships, and other primitive recursive formulas. If there is a search involved in the formula, it must be
bounded. The following is an example of a primitive recursive formula.

Div(x, y) ≡ ∃z[(z ≤ x) ∧ (x = y · z)]

Div(x, y) is a primitive recursive formula because it is only defined by simple arithmetical relationships (·) and
logical relationships (=, ∧, and ≤). Additionally, the search (∃z) is bounded by value of x.

Primitive recursive formulas are crucial to Gödel’s proof. The arithmetic system P (defined in the next section)
contains the basic arithmetical and logical relationships within its axioms. So, as long as a formula can be defined
only in these simple relationships, it has a corresponding arithmetic function that can be defined within P. By
their recursive definition, primitive recursive formulas can be derived from the basic arithmetical and logical
relationships in a finite number of steps. Additionally, the rules of inference of P contain the logical relationships
necessary to derive new formulas. This means that all primitive recursive formulas have a corresponding arithmetic
function that is definable within P. Further, because every primitive recursive formula can be defined within P in a
finite series of steps, these same steps can be used to evaluate the corresponding arithmetic function for a given
input, serving to prove the formula either true or false for a specific input. Therefore, not only does every primitive
recursive formula have a corresponding arithmetic function that is definable within P, but also, when its variables
are given specific values, it is either provably true or provably false.
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2 The Arithmetic System P

Gödel begins his paper by defining a specific arithmetic system he calls P, which is heavily based on Principia
Mathematica, a simple but sufficient arithmetic system. The system P also uses the Peano Axioms, widely accepted as
the formal definition of natural numbers.

2.1 Basic Signs of P

P uses only 7 primitive elements in its alphabet: 0,¬,∨,∀, (, ), and f . These all have their usual meaning, with f being
the successor function, meaning one more than its argument. In this way, f and 0 are used together to define the natural
numbers 0, 1, 2, 3 . . . as 0, f0, ff0, fff0 . . .. Note that other logical symbols, such as ∧,∀, =⇒ , and = can be defined
in terms of these primitive elements. For clarity, the other logical symbols are employed directly.

The other basic signs are variables, represented by v1, v2, v3 . . .

2.2 Axioms of P

Gödel sets forth the axioms of p, a subset of which are presented here. First, he directly uses several of the Peano
Axioms to define the natural numbers:

• ¬(fv1 = 0)

There are no strings for which the successor is 0, meaning that there are no negative numbers.

• fv1 = fv2 =⇒ v1 = v2

If the successor of two numbers are equal, so are the two numbers.

• [contains(v1, 0) ∧ ∀v2(contains(v1, v2) =⇒ contains(v1, fv2))] =⇒ ∀v2(contains(v1, v2))
This is the principle of induction. If v1 contains 0 and v1 containing an integer implies v1 contains the next
integer, then v1 contains all natural numbers.

The axioms also include a set of logical, truth-preserving statements such as p ∧ p =⇒ p. Further, the axioms include
the schemas necessary to turn these statements into infinite axioms by substitution, in this case substituting any axiom
or theorem for p.

2.3 Rules of Inference of P

There are two rules of inference in P. The class of provable formula is the class containing all of the axioms of P and
all formulas derivable through these rules of inference.

• The formula c can be derived from the formulas a and b if a = (¬b ∨ c).

• The formula ∀vi(a), where vi is any variable, can be derived from the formula a.

3 Gödel Numbering

Gödel creates a one-to-one mapping between natural numbers and mathematical expressions. This way, mathematical
expressions can be identified by a unique integer that mathematical expressions can act on. Because the mapping is
one-to-one, there exists a function φ(s) = g that takes a mathematical expression (a string in the language P) and
returns its Gödel number. Likewise, there exists a function φ′(g) = s that takes a Gödel number and, using prime
factorization, returns the mathematical expression it corresponds to.
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In Gödel’s proof, the distinction between a formula and its Gödel number is important because the formula is an object
of the metamathematical realm while the Gödel number is an object within P. To make the distinction clear, the Gödel
number of a formula F will be denoted F.

3.1 Primitive Elements

The primitive elements are assigned to integers less than 14 as follows:

‘0’ 1 ‘∀’ 9
‘f’ 3 “(’ 11
‘¬’ 5 ‘)’ 13
‘∨’ 7

3.2 Variables

Variables are assigned prime numbers greater than 13. For example v1 = 17, v2 = 19, v3 = 23 . . .. These assignments
are all unique and do not share any prime factors.

3.3 Formulas

A formula in P is a finite series of basic signs. By translating each basic sign into its Gödel number, as previously
described, a formula can be represented by a finite series of natural numbers. In turn, this finite series of natural
numbers can be mapped to a single natural number. Given this finite series of natural numbers n1, n2, n3, . . . nk,
we raise the ith prime number to the power of the ith number in the series and multiply the results together, getting
2n1 · 3n2 · 5n3 . . . pnk

k .

These assignments are all unique. The Gödel number of a formula can be distinguished from that of a basic sign because
it will have multiple prime factors whereas a basic sign has only one prime factor. A formula is also distinguishable
from other formulas because the index of each basic sign in a formula is uniquely identified by the prime number it is
assigned within the value pni

i . Further, which basic sign exists at a given index is uniquely identifiable by its Gödel
number.

3.4 Sequences of Formulas

It is crucial to Gödel’s proof that sequences of formulas can be assigned a Gödel number. This way, proof schemas
can be assigned a Gödel number and be referenced within P. The approach to mapping a sequence of formulas to a
natural number is the same as mapping a sequence of basic signs within a formula to a natural number. By translating
each formula into its Gödel number, as previously described, a sequence of formulas can be represented by a finite
series of natural numbers. Given this finite series of natural numbers n1, n2, n3, . . . nk, we raise the ith prime number
to the power of the ith number in the series and multiply the results together, getting 2n1 · 3n2 · 5n3 . . . pnk

k . Later on,
this series will be referred to as the series of numbers that make up this Gödel number, and an individual pni

i will be
referred to as an element of the series of numbers that make up the Gödel number.

For the same reasons as above, the Gödel number of a given sequence of formulas can be distinguished from that of any
other sequence of formulas. Further, a series of formulas is distinguishable from a formula, because when we factor out
one of the prime numbers pi to get a specific element of the sequence pni

i , ni will have multiple prime factors. This is
unlike a formula, in which ni represents a basic sign and only has one prime factor.

4



Gödel’s Incompleteness Theorem MORENO

4 The Arithmetization of Metamathematics

A key point in Gödel’s paper is the ability to mirror metamathematics in P. By translating mathematical expressions
into their Gödel numbers and translating their metamathematical relations into arithmetic relations, metamathematical
statements can be translated into P. The following is an example of a simple metamathematical statement translated
into an arithmetic statement. Div(x, y) is the metamathematical statement “x is divisible by y.”

Div(x, y) ≡ ∃z[(z ≤ x) ∧ (x = y · z)] (1)

This arithmetic statement can be expressed in P because it is a primitive recursive formula, consisting only of basic
arithmetical and logical relationships. Further, since this arithmetic statement can be expressed as a formula in P, it can
be assigned a unique Gödel number.

In order to describe metamathematical statements between two formulas, there needs to be a corresponding arithmetical
relation between their two Gödel number’s. The following is an example of an arithmetical relation that assists in
breaking down a sequence of formulas into their individual formulas, or a sequence of basic signs into their individual
basic signs. The formula Pr(n, x) is the nth prime factor, in order of magnitude, of the number x. Because the Gödel
numbering system is dependent on prime factorization, Pr(n, x) is useful in interpreting a Gödel number.

Pr(0, x) ≡ 0

Pr(n+ 1, x) ≡ εy[(y ≤ x) ∧ (Prim(y)) ∧ (Div(x, y)) ∧ (y > Pr(n, x))] (2)

The formula εy H(y) represents the smallest number for which H(y) holds and 0 if there is no such number. Prim(y) ≡
y is a prime number. This is also shown to be primitive recursive. Both formulas are shown to be primitive recursive.
The formula Pr(n, x) asserts that y is the smallest prime factor of x that is larger than the the nth prime factor of x. The
initial assertion y ≤ x bounds the search for y. Given the base case that the 0th prime factor of x is 0, the formula uses
recursion to find the n+ 1th prime factor of x. Because this formula is primitive recursive in form and only employs
other relations that are primitive recursive, Pr(n, x) is expressible in P.

Gödel’s paper provides 46 such formulas representing metamathematical statements, each of which is primitive recursive.
Thus, these metamathematical statements can be defined within P. The final two formulas Gödel presents are key to his
proof of incompleteness. Prov(x,y) means that x is a sequence of formulas that proves the formula y. The formal
definition requires several other functions that Gödel provides. Ps(x) means that x is a proof-schema, a finite series of
formulas such that each formula is either an axiom or deducible from previous formulas using the rules of inference of
P. L(x) is the length of the series of numbers that make up the Gödel number x. Nel(n,x) is the nth element of the
series of numbers that make up the Gödel number x.

Prov(x,y) ≡ (Ps(x)) ∧ (Nel(L(x),x)) = y (3)

Prov(x,y) should require that x is a proof-schema and that the final formula in that proof-schema is y. Equation (3)
asserts exactly that. The second half of the equation states that the last element in the series of numbers that make up x

is y. Because the x is a proof schema, the last element in the series of numbers that make up x is the Gödel number for
the formula that x is supposed to prove.

The final equation that Gödel provides is Provable(y) which asserts that y is a formula which is provable in P. This
follows directly from Prov(x,y). It turns out that Provable(y) is not primitive recursive because the search ∃x is
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unbounded. However, this is the only formula that Gödel’s proof does not require to be primitive recursive, so this is
not a problem.

Provable(y) ≡ ∃xProv(x,y) (4)

In the next section, it will also be important to know that Gödel provides a primitive recursive definition of substitution.
Sub(x, [v1 : y1, v2 : y2, ...vn : yn]) returns the Gödel number for the formula derived by taking x and substituting
every occurrence of the variable vi with the Gödel number yi. For simplicity, Sub is not explicitly referred to. However,
it is important that the process of substitution within primitive recursive formulas yields primitive recursive formulas.

5 Gödel’s Proof

5.1 P is Incomplete

After defining the equations necessary, Gödel shows that P is able to deduce a formula H(x) for which it cannot be
proven ∀xH(x) nor ¬∀xH(x). Thus, U = ∀xH(x) is an undecidable formula within this system. This proof is detailed
below.

Variables in P are each assigned a specific prime number. In this way, two formulas can refer to the same variable, which
can be important when a formula is substituted into another formula. For example, consider the formula F = ∀vi[G]

where G is a variable for a formula. If G is replaced by a formula with vk as a variable, this is very different from
G being replaced by a formula with vi as a variable, since F quantifies G with vi. For clarity, throughout the proof,
the variables that are shared between formulas are referred to as v1 and v2, while the variables that are not shared are
referred to as a and b.

First, Gödel defines a new formula Nprov(a,b).

Nprov(a,b) ≡ ¬Prov(a,b{v2 : b}) (5)

Nprov(a,b) asserts that the series of formulas a does not prove the formula derived by substituting every occurence
of the variable v2 in b with b. Note that b{v2 : b} is self-referential. Because Nprov(a,b) is a primitive recursive
function, if the formula holds for specific values, it can be proven within P that it holds for those values.

Nprov(a,b) =⇒ Provable(Nprov(a,b)) (6)

Similarly, it can be asserted that if Nprov(a,b) doesn’t hold for specific values, it can be proven within P that it doesn’t
hold for those values.

¬Nprov(a,b) =⇒ Provable(¬Nprov(a,b)) (7)

Gödel then presents two more formulas. At this point in the proof, it becomes difficult to translate the formulas into
English, so it is best to consider them in a formal, abstract sense. Xform(v2) is the statement that no matter what is
substituted for a, Nprov(a, v2) holds.

Xform(v2) ≡ ∀v1Nprov(v1, v2) (8)
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Now consider the Gödel number for the formula Xform(v2), Xform(v2). Yform(v1) is defined as the formula derived
from Nprov(a,b) where v1 is substituted for a and Xform(v2) is substituted for b.

Yform(v1) ≡ Nprov(v1,Xform(v2)) (9)

Next Gödel substitutes Xform(v2) into the formula Xform(v2). The work is shown below.

Xform(Xform(v2)) = ∀v1Nprov(v1,Xform(v2))

= ∀v1Yform(v1) by (9)
(10)

Finally, Gödel returns to equation 6.

Nprov(a,b) =⇒ Provable[Nprov(a,b)]

¬Prov[a,b{v2 : b}] =⇒ Provable[Nprov(a,b)] by (5)

¬Prov[a,Xform(Xform(v2))] =⇒ Provable[Nprov(a,Xform(v2))] sub. b = Xform(v2)

¬Prov[a,∀v1Yform(v1)] =⇒ Provable[Yform(a)] by (10), (9)

(11)

The same steps apply to equation 7, resulting in the following.

Prov[a,∀v1Yform(v1)] =⇒ Provable[¬Yform(a)] (12)

Consider the following equation.

U ≡ ∀v1Yform(v1) (13)

U is unprovable. For the sake of contradiction, let’s assume it is provable. Then there would exist some series of formulas
a that proves it, meaning Prov(a,∀v1Yform(v1)) would hold. By (12), this would imply Provable(¬Yform(a)),
meaning that there is an a such that it’s provable that ¬Yform(a). But we assumed that ∀v1Yform(v1) is provable,
meaning that Yform(a) is provable! Thus, the assumption that U is provable leads to an inconsistency.

It is also the case that ¬U is unprovable. As was just shown, ∀v1Yform(v1) is unprovable. This means that there
is some series of formulas a that doesn’t prove it, meaning ¬Prov(a,∀v1Yform(v1)). By (11), this implies
Provable(Yform(a)), meaning that there is an a such that it’s provable that Yform(a). If ¬∀v1Yform(v1) was
provable, this would cause an ω-inconsistency because we know there is an a such that it is provable that Yform(a).
So, ¬U is also unprovable.

If P is ω-consistent, then both U and ¬U are unprovable. Thus, U is an undecidable formula if P is ω-consistent.

5.2 U is an Unprovable but True Formula

Although U is undecidable within P, from the metamathematical realm we can see that U is true.

U ≡ ∀v1Yform(v1) by (13)

= ∀v1Nprov[v1,Xform(v2)] by (9)

= ∀v1Nprov[v1,∀v1Nprov(v1,v2)] by (8)

(14)
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From the perspective of P, The equation U ≡ ∀v1Nprov[v1,∀v1Nprov(v1,v2)] is a meaningless string. However,
from the metamathematical perspective, there is an attributed meaning. Remember that Nprov(a,b) means the series
of formulas a does not prove the formula derived by substituting every occurence of the variable v2 in b with b.

U ≡ ∀v1Nprov[v1,∀v1Nprov(v1,v2)] means that there is no proof of ∀v1Nprov(v1, v2) when it’s plugged into
its own v2, meaning there is no proof of ∀v1Nprov[v1,∀v1Nprov(v1,v2)]. This is the original statment U! So, U
asserts its own unprovability. As shown in the previous section, U is in fact unprovable, meaning U is true. Thus,
although it’s impossible to prove U from within the system P, it can be shown from the metamathematical realm that U
is true.

5.3 The Consistency of P is Unprovable

Using the undecidability of U, Gödel demonstrates that the consistency of P is unprovable. The previous proof of
incompleteness showed that if P is ω-consistent, U is unprovable. This is represented in the first line of the following
proof. The term Pconst means that P is ω-consistent.

Pconst =⇒ ¬Provable[U]

Pconst =⇒ ∀v1¬Prov[v1,U)] by (4)

Pconst =⇒ ∀v1¬Prov[v1,∀v1Yform(v1)] by (13)

Pconst =⇒ ∀v1¬Prov[v1,∀v1Xform(Xform(v2))] by (10)

Pconst =⇒ ∀v1Nprov[v1,Xform(v2)] by (5)

Pconst =⇒ ∀v1Nprov[v1,∀v1Nprov(v1,v2)] by (8)

Pconst =⇒ U by (14)

Using only the equations expressible within P, this proves that if P is ω-consistent, then U is true. So, if it can be
proven that P is ω-consistent within P, then U can be proven within P. However, we know from the previous proof of
incompleteness that U is unprovable within P. So, it must be the case that the ω-consistency of P cannot be proven
within P.

6 Extension to other Mathematical Systems

Gödel’s proof of incompleteness only relies on primitive recursive formulas. Because of this, the same idea can be
applied to any mathematic system for which all primitive recursive relations are definable. As was discussed in the
background, despite its simplicity, P contains all primitive recursive relations. Because P is a very simple mathematic
system that contains only the basic arithmetic of natural numbers, every useful mathematic system is at least as powerful
as P. To be as powerful, these systems must contain the axioms and rules of inference of P, meaning that they can
define all primitive recursive formulas and Gödel’s findings translate to them. Therefore, Gödel proves that every
nontrivial mathematic system is necessarily incomplete and cannot be proven ω-consistent within the system.
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