
CSCI 270: Dynamic Programming

Overview

Dynamic Programming is useful in optimizing recursive algorithms. Recursive algorithms use the solutions to
smaller versions of their problem in order to solve the entire problem. Often, recursive algorithms make the same
calls multiple times, wasting resources. Dynamic Programming takes a problem that is recursive in nature and
stores the solutions to smaller versions of the problem along the way, eliminating the waste of recalculating these
values. In this handout, I’ll provide the generic steps to create a DP solution. For each step, I’ll give an example of
how it would look for the Coin Problem from lecture.

Coin Problem

Given a set of k coin values C = {c1 = 1,c2,c3...ck }, and a target value T , what is the minimum number of coins
needed to sum to the target value? What are the coins used in the optimal solution? Note that multiple coins of a
given coin value c j can be used. Write an algorithm to answer this question efficiently.

For example, given the coins C = {1,5,8} and the target value T = 15, the optimal solution would take three coins,
using three 5s.

Step 1: What is the Goal?

The first step in solving a DP problem is to state what the goal of your algorithm is. Writing this out explicitly can be
helpful in coming up with a recursive function as well as knowing where your answer is stored in the end. I like to
start by only considering the optimization question (what is the minimum number of coins), leaving the traceback
question (what coins did we use in the solution) for later.

In the case of the Coin Problem, the goal is to return the minimum number of coins that sum to T .

Step 2: Define the Recursive Function

First we will create a recursive function for the problem at hand; we will translate this into an iterative solution in
the next step. Defining your recursive function has two parts. First, you need to define your function’s inputs and
outputs explicitly in English. Second, you need to write pseudocode for your function.

In the case of the Coin Problem, we will define a function NumCoins(i ) that returns the minimum number of coins
needed to sum to i .

NumCoins(i ) = 1+min1≤j≤k{ NumCoins(i − c j ) }

This function is based on breaking the coins that optimally sum to i into two sets: one coin of any of the values c j

and the coins that optimally sum to what remains of the target value, i − c j . So, the number of coins necessary to
optimally sum to i is 1 + the number of coins in the second set. Since we already defined NumCoins to return the
minimum number of coins needed to sum to the input value, we recursively call NumCoins(i −c j ) to compute the
number of coins in the second set. Note that If i − c j < 1 the min subroutine will need to ignore option j because
the value of the coin c j is already greater than i , so we wouldn’t use it in the sum.

If you’re having trouble deciding what your recursive function’s inputs should be, it can be helpful to start defining
the function mathematically until you realize that you need to pass some piece of information down to the re-
cursive call, adding this information as an input parameter. When defining the function mathematically, another
tip is to think about what bite-size decision you can make at each level of recursion. Because it is recursive, our
function inherently represents trying a decision about a small piece of the problem and then combining that with
the optimal solution for the rest of the problem. In the case of the coin problem, our decision is picking one coin to
include in the sum. After we pick one coin, we can depend on the recursive function to decide the optimal solution
for the remaining target value (i −c j ). The function then chooses to include whichever coin results in the minimal
number of coins needed to sum to the remaining target value.



Step 3: Translate from Recursive to Iterative

Now that we’ve defined the recursive function, we want to make it iterative. This will consist of creating the array,
deciding what direction to fill it in, and deciding the base case(s).

For clarity, we will change from a function NumCoins(i ) that returns the minimum number of coins needed to sum
to i to having an array NumCoins of size T such that NumCoins[i ] stores the minimum number of coins needed
to sum to i . We keep the same formula to fill in NumCoins: NumCoins[i ] = 1+min1≤j≤k{ NumCoins[i − c j ] } .

Next we need to consider what direction the array is filled in. When we fill in NumCoins[i ], we need to have already
calculated NumCoins[i − c j ]. So, we will fill in the array from left to right so that the dependencies are available.

I think that it’s helpful to visualize the array. Since our recursive function only took one input, our array is 1D. For
the sake of the diagram, consider the specific case where the set of possible coins is C = {1,2,4}. The arrows in the
picture below represent which values we will look at when filling in NumCoins[i ].

NumCoins

number of coins:
index: 0 1 ... i-4 i-3 i-2 i-1 i ... T-1 T

Next we need to define our base cases. In this Coin Problem, the base cases include all of the ways to use only one
coin, NumCoins[1] = NumCoins[2] = NumCoins[4] = 1. Additionally, NumCoins[0] = 0.

NumCoins

number of coins: 0 1 1 1
index: 0 1 2 3 4 ... i ... T-1 T

Step 4: Define the Answer

Often, the answer to the original question we restated in Step 1 can be found in a specIfic cell in the array. Other
times, we might have to do some extra work to find the answer. For example, the answer could be the minimum
value in the array. One way to recognize where the answer is stored is to compare the original question from Step
1 to the English definition of our array from Step 3.

In the case of the Coin Problem, our original goal was to return the minimum number of coins that sum to T .
Our recursive array NumCoins[i ] stores the minimum number of coins needed to sum to i . Through a simple
substitution of the target value For i , we find that our array stores the solution in cell T ; NumCoins[T ] stores the
minimum number of coins needed to sum to T .

Step 5: Traceback

In some problems, you will also need to traceback the path that led you to the optimal answer. This usually consists
of storing extra information along the way so that when you find your optimal solution you remember how you got
there. Sometimes the array you created to solve the optimization will be enough to traceback the solution and you
don’t need to store extra information. Notice that the way you traceback the path can affect the overall runtime
and space complexity of your solution.

In the case of the Coin Problem, we could store extra information along the way, keeping a 2D array that includes
a row for each coin value c j that storing how many of the coins we used to reach that sum. If NumCoins[i − c j ]
was the minimum value when we calculated NumCoins[i ], we would copy over the coins used to sum to i − c j

and add one more coin to the number of c j coins we used. By storing this extra information, we change the space
complexity of the problem, requiring a 2D array of size T ·k.

It turns out that in this problem we don’t actually need to store extra information. We can traceback the solution
from the array we’ve already stored to answer the optimization question. Starting from NumCoins[T ], we look
back at the values in NumCoins[T − c j ] for all values of c j . We know that we would have chosen the minimum of



these values, so we record that we used one coin of value c j where c j was the coin that minimized the number of
coins needed. We then proceed to examine NumCoins[T − c j ] in the same way, checking what previous value we
would have used. This process takes O(T ·k) time since we examine k spots at each step backwards, and we could
take at most T steps backwards.

Step 6: Write the Algorithm Explicitly

In order to make sure that you’ve completed all the necessary steps, you can write out your DP algorithm explicitly.
This will include the base cases, directions for filling in the array, the formula to calculate the standard case, and
where to find the answer. If the problem requires traceback, store any extra information you need and include the
steps to traceback your path.

function COINPROBLEM(T, C = {c1 = 1,c2,c3...ck }))
NumCoins ← empty array of size T +1
NumCoins[0] ← 0 . base cases
for j ← 1 . . . k do

NumCoins[c j ] ← 1
end for

for i ← 0 . . . T do . fill in array
if NumCoins[i ] 6= null then . don’t overwrite base cases

continue
min ←∞ . find the minimum previous case
for j ← 1 . . . k do

if i − c j < 1 then . coin value too large
continue

prev ← NumCoins[i − c j ]
if prev < min then

min ← prev

end for
NumCoins[i ] ← 1+min . our formula for the standard case

end for

i ← T . backtrace
CoinsUsed ← array size k filled with zeroes . CoinsUsed[ j ] is the number of coins of value c j used
loop

min ←∞ . find the minimum previous case
minIndex ←−1
for j ← 1 . . . k do

if i − c j < 1 then
continue

prev ← NumCoins[i − c j ]
if prev < min then

min ← prev
minIndex ← j

end for
CoinsUsed[minIndex] ← CoinsUsed[minIndex]+1
i ← i − j
if min = 1 then . back to base case

CoinsUsed[i] ← CoinsUsed[i]+1
break

end loop

return NumCoins[T ], CoinsUsed . return minimum number of coins and coins used
end function



Step 7: Analyze Runtime and Space Complexity

Finally, you need to analyze the efficiency of your algorithm using O-notation. The runtime for a DP algorithm is
(the time to calculate a single array cell) · (the size of the array) + (the time to find the answer in the array) + (the
time to perform the traceback). The space complexity is the size of the array, which may include space to store
extra information for the traceback step.

In the case of the Coin Problem, calculating an array cell takes O(k). The size of the array is O(T ). As described
earlier, the traceback step takes O(T ·K ). So, the total runtime of our algorithm is O(T ·K ). The space complexity
is O(T ).

Conclusion

I’m hopeful that these steps can serve as a scaffolding for how to approach a generic DP problem. Some of the
steps that I’ve given are not strictly necessary to get full credit for a problem. For example, you would of course
not lose points for leaving out Step 1, where we restated the problem. The minimum that you need to include is
the inputs and outputs of your recursive function, a definition for your recursive function, the base cases, how to
find the final answer, and the runtime analysis. Although these are the minimum requirements, if you’re stuck on
a problem, going through each step outlined above can be helpful.



Addendum: Recursive vs Iterative Implementation

The difference between a recursive implementation and an iterative implementation in DP is nuanced and all
the more confusing because these terms are overloaded. All DP solutions are recursive in nature in the sense
that they build upon optimal sub-solutions. The implementation itself can be either recursive or iterative in the
programming sense of the words. If you follow the steps above, you first create a recursive function that answers
the question at hand. Then, you translate this recursive function into an iterative implementation. The iterative
implementation is conceptually identical to the recursive function; the formula to fill in a given spot in the storage
array is the same formula the recursive function computes and returns. We translate the problem into an iterative
implementation purely for clarity; by examining the way the array is filled in, you can ensure that your base cases
provide the dependencies to fill in the rest of the array.

That being said, translating your recursive function to an iterative implementation is not necessary. If you prefer,
you can call the recursive function top-down, storing the sub-solutions into a storage array as you go. The recursive
function will first check the storage array to see if you’ve already made this calculation. If you have, the function
will short-circuit and return the value you calculated and stored earlier instead of making further recursive calls.
This recursive implementation provides the exact same benefit of DP as using an iterative implementation – it
takes a problem that is recursive in nature and stores the solutions to smaller versions of the problem along the
way, eliminating the waste of recalculating these values. Below is an example of what a recursive implementation
to the Coin Problem would look like.

function COINPROBLEM(T, C = {c1 = 1,c2,c3...ck }))
StorageArray ← empty array of size T +1 . stores minimum number of coins to sum to index
StorageArray[0] ← 0 . base cases
for j ← 1 . . . k do

StorageArray[c j ] ← 1
end for

return RecursiveHelper(T ) . top level recursive call will return the answer
end function

function RECURSIVEHELPER(t ) . returns minimum number of coins to sum to t
if t < 0 then . invalid; target value too small

return NULL
if StorageArray[t ] 6= null then . already performed this calculation; short circuit

return StorageArray[t ]

min ←∞ . find the minimum previous case
for j ← 1 . . . k do

prev ← RecursiveHelper(t − c j )
if prev 6= NULL and prev < min then

min ← prev

end for

StorageArray[t ] ← 1+min . Store calculation in array
return 1+min

end function


