
CSCI 270 Reading Supplement: Number Theory & Cryptography

1 Number Theory

1.1 Modular Exponentiation

Suppose we want to calculate 3644 mod 645. One way we might imagine doing this is to compute 3644,
divide by 645, and keep the remainder. It turns out there are better ways.

To do this, I am going to compute 32
x

for all powers of two 0 ≤ x ≤ blog 644c. In each case, I need only keep
the remainder when divided by 645. Furthermore, I use the previous row in the table and square its result
to get the next one. For example, when computing 38, I start with 34, square the result, and keep only the
result after dividing by 645 : in this case, 38 ≡ 111 (mod 645). Then, when computing 316, I start with 111
(the result from 38) and square that.

x 3x mod 645
1 3
2 32 = 9
4 92 = 81
8 812 = 6561 = 10 · 645 + 111
16 1112 = 12321 = 19 · 645 + 66
32 662 = 4356 = 6 · 645 + 486
64 4862 = 236196 = 366 · 645 + 126
128 1262 = 15876 = 24 · 645 + 396
256 3962 = 156816→ 81

Before proceeding, ask yourself what the value of 3512 is going to be in this modulus. Note that it is going
to be the result of squaring 81 and taking the remainder mod 645.

If you answered 111, you’re right. You shouldn’t have needed to do a computation to do this: 34 ≡ 81 also,
and after we went through the computation for that, we found 38 ≡ 111.

How do we use this to compute 3644? You might notice that 644 isn’t a power of two. Fortunately, like
all positive integers, it can be represented as the sum of powers of two: in this case, 644 = 512 + 128 + 4.
Therefore, 3644 = 3512 · 3128 · 34.

ModularExponentiation(b, n = (ak−1ak−2 . . . a1a0),m)
Input: b, the base ; n, the exponent written in binary; m, the modulus.
Output: The remainder when bn is divided by m.

x← 1
power = b % m
for i = 0→ k − 1 do

if ai = 1 then
x← (x · power ) % m

power = power · power
return x

How long does it take to compute modular exponentiation? We create O(log n) rows of the table, each of
which take a constant amount of computation. We then combine O(log n) rows to form the result; each
combination takes a constant amount of computation as well. These constants assume that b and m are of
size O(1); they can be re-evaluated if that is not true. For example, in the RSA algorithm, the modulus m
will be a few hundred bits long (much larger than a C++ long).



1.2 Euclid’s Algorithm

Sometimes you want to calculate the gcd (greatest common divisor) of two numbers. In sixth grade, we did
this by factoring both numbers and multiplying the common factors.

But finding the prime factorization is too slow for large numbers. For that, we have the Euclidean Algo-
rithm.

It’s based on the idea in the following example: Suppose we want to calculate gcd(91, 287).

Any common divisor of 91 and 287 must also divide 287− 91 and 287− 2 · 91 and so on. So we observe that
287 = 91 · 3 + 14 ... and thus, any common divisor of 287 and 91 is also shared by 14.

That is, gcd(91, 287) = gcd(91, 14).

The same thought process gets me to 91 = 14 · 6 + 7, so gcd(91, 14) = gcd(14, 7).

And I can solve that easily; 14 = 7 · 2 so 7 = gcd(14, 7) = gcd(91, 14) = gcd(91, 287).

More mathematically, this procedure says that if a = bq+ r (for integers a, b, q, r), then gcd(a, b) = gcd(b, r).
And if you’d like directions to follow, here’s an algorithm:

EuclideanAlgorithm (a,b: positive integers)

x← a
y ← b
while y 6= 0 do
r ← x%y
x← y
y ← r

return x

I know many students aren’t yet in love with recursion, but the recursive formulation1 is much more clear:
take the gcd of the smaller of a, b with the remainder when the larger is divided by the smaller.

EuclideanAlgorithmRecursive (a,b: positive integers)

if a < b then
return EuclideanAlgorithmRecursive(b,a)

return EuclideanAlgorithmRecursive(b, a % b)

Question 1. What is gcd(414, 662)?

1.3 Finding Primes

1.3.1 The Grade Six Algorithm and the Sieve

How did you find prime numbers in sixth grade? One mechanism we can use is by checking the possible
prime factors of a number. Observe that if n is a composite integer, it has a prime divisor less than or equal
to
√
n.

Question 2. Is 101 prime? Prove your answer.

To solve this, we can check every prime number up to
√

101 ≈ 10.1 and confirm that none divide 101. Note

1That’s all recursion is: how to solve a big problem where lots of the work is just solving a smaller version of the same
problem. Obligatory “see also, recursion.”



you should write each and that it doesn’t divide 101. Writing “101 is prime because it is only divisible by
itself and 1” is a circular argument.

We can use a more algorithmic approach; suppose you wanted to find all primes not exceeding some number.
There’s a method for this, known as the Sieve of Eratosthenes.

To find all primes not exceeding x, note that any such prime must have a prime divisor ≤
√
x. List out the

numbers 2...x. Remove all numbers a multiple of the first number, so we have all odd numbers between 3
and x. Do it again, so all multiples of 3 are removed. Then all multiples of 5 are removed, followed by 7.
Repeat until the smallest number is larger than

√
x.

For example, let’s find all primes less than or equal to 49, using the sieve:

2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35
36 37 38 39 40 41 42
43 44 45 46 47 48 49

How long does this approach take? To do that, we need to apply the sieve to find all primes whose value
is at most

√
n. This takes O(n) because applying the sieve up to size x takes O(x2)2. Plugging in x =

√
n

yields our running time.

O(n) seems efficient, but keep in mind this means it is linear in the value of n not the number of bits
needed to represent it. A simple C++ unsigned int can have value up to around 232, despite being only 32
bits in length. In CSCI 170 and 104L, we told you polynomial really meant “polynomial in the size of the
input,” but we may not have clarified much beyond that. Later in this section, we will see algorithms whose
running time is proportional to the number of bits needed to represent a number : so, for a 30-bit number,
it’s something times 30 instead of something times 230: quite the difference!

1.3.2 Fermat’s Little Theorem

Fermat’s Little Theorem states that if p is prime and a is an integer not divisible by p, then ap−1 ≡ 1
(mod p); furthermore, for every integer a we have ap ≡ a (mod p).

For example, 622 ≡ 1 (mod 23) – note that 23 is a prime number. Similarly, 73100 ≡ 1 (mod 101).

Question 3. 21234566 ≡ 899557 (mod 1234567). Is 1234567 a prime number?

Question 4. Compute 235 mod 7. Remember that 7 is a prime number.

Question 5. For all a such that 1 ≤ a ≤ 560, a560 ≡ 1 (mod 561). Is 561 prime?

Unfortunately, it is not. While Fermat’s Little Theorem can be used to definitively show that a number is
not prime, it cannot be used to show that a number is prime.

For any number n, if n is prime and a meets the criteria above, then an−1 ≡ 1 (mod n). Therefore, if a
meets the criteria but an−1 6≡ 1 (mod n), then we know that n is not prime. However, this is not an if and
only if, and some numbers (such as 561) can “pretend” to be prime. This means that there is some non-zero
probability that we get a wrong answer when testing if a number is prime. So we need a better test.

2For each of the x values we will cross off O(x) squares



As for efficiency: note that for any choice of a, this takes O(log n) iterations to determine if a number is
either certainly composite or possibly prime. This is much faster than the grade six algorithm! It just doesn’t
find it for certain...

1.3.3 Rabin-Miller Test

To extend this, I am going to add one more fact about prime numbers to your growing education. I am not
going to prove this fact here.

Fact: If n is prime, then the only solutions (mod n) to x2 ≡ 1 (mod n) are 1 and n− 1. That is, the only
square-roots of 1 (mod n) are 1 and −1 (n− 1 is essentially −1 mod n).

Note that this is not true for many composites. In fact, if n is neither prime nor a power of a prime, then
there are nontrivial square roots of 1 mod n.

For example, 15 is composite and solutions for x2 ≡ 1 (mod 15) are x ≡ 1, 4, 14. The first and last are 1 and
n− 1, while 4 is neither. I leave it to the reader to verify that 42 ≡ 1 (mod 15). Note that this means that,
mod 15,

√
1 = 1, 4, 11, 15.

With that in mind, we now face how to use this knowledge. We could, when testing if a number n is prime,
compute x2 (mod n) for many values of x and see if we happen to find a square root of 1 along the way. But
this adds significant computation. Instead, I am going to compute several along the way.

Suppose I want to test if some value p is prime or not. I can use Fermat’s Little Theorem and an appropriate
value of a and compute ap−1 (mod p). I am instead going to do this in a slightly different fashion than the
direct modular exponentiation algorithm from earlier.

If p is even and it isn’t 2, I immediately know it isn’t prime. Once I have conducted that test, let’s consider
any odd whole number p. Because p − 1 is even, I can divide it by two at least once, possibly more times,
until I end up with an odd value. So I can write p − 1 = 2kq, for some odd whole number q and positive
integer k (which corresponds to how many times I divided by two until ending up with an odd number).

I can rewrite ap−1 (mod p) as a2
kq (mod p). To compute this, I find aq (mod p) and then square the result

k times. This takes O(k log q) operations because we square the previous value k times, and for each value
we reach, the modular exponentiation algorithm takes O(log q). Note that k is at most the number of bits
needed to represent the value p (O(log p)), and q has value at most p. Therefore, this is O(log p) operations:
a polynomial function of the size of the input (as opposed to the value of the input). Much faster than the
grade six algorithm.

Now we have computed ap−1 (mod p) by computing aq (mod p) and then squaring the result k times. If
the result of this operation isn’t 1, we know that p is composite (by Fermat’s Little Theorem) and stop. If
the result is 1, then p might be prime. But also, even if this was the case for all a ∈ [1, n − 1], p might a
Carmichael number that is merely “pretending” to be prime.

The Rabin-Miller test allows us to check another indicator for p being composite. As we evaluate ap−1 by
starting with aq (mod p) and squaring it repeatedly, we can check the value of a2

iq (mod p) for all i ∈ [0, k].

Remember that a2
kq (mod p) ≡ 1. If aq (mod p) 6≡ 1, then at some point there is a crossover where a2

iq

(mod p) ≡ 1 but a2
i−1q (mod p) 6≡ 1. If a2

i−1q (mod p) 6≡ −1, then we’ve found a value x = a2
i−1q such that

x2 = a2
iq ≡ 1 (mod n) but x (modn) is not 1 or -1. This violates the fact about primes at the beginning of

this section, so we know that p is composite.

If I give you a value of a such that a potential prime number p does not reveal itself as composite with
the Rabin-Miller test, you might wonder how likely it is that p is in fact prime. It turns out that there are



no “Carmichael-type numbers” for the Rabin-Miller Test; if p is composite, at least 75% of values3 for a
between 1 and p − 1 will cause p to reveal itself as composite. So, if we test one value of a and it doesn’t
reveal that p is a composite, the probability of p being composite is 0.25. If we test m values of a, and none
of them reveal p as composite, then the probability of it being composite is 0.25m. Very quickly, we can be
fairly confident that p is prime, and we can always increase our confidence by testing more values of a.4

As an example of a Carmichael number that reveals itself through the Rabin-Miller test, let’s examine the
Carmichael number p = 561. We’ll run the Rabin-Miller test with a = 2. We can write p−1 = 560 as 24 ·35.

• 235 ≡ 263 (mod 561)

• 22·35 ≡ 2632 ≡ 166 (mod 561)

• 24·35 ≡ 1662 ≡ 67 (mod 561)

• 28·35 ≡ 672 ≡ 1 (mod 561)

Note that setting x = 24·35, x2 ≡ 1(mod 561) and x is something other than 1 or −1 (mod p). The
Rabin-Miller test has revealed that p is a composite.

1.4 Euler’s Totient Function

The function Φ(n) is defined as the number of positive integers less than or equal to n that are relative prime
to n. For example, Φ(10) = 4 because 10 is relatively prime to 1, 3, 7, 9.

Question 6. What is Φ(6)?Φ(7)?Φ(5)?

For Φ(6), we can see that 2, 3, 4 share a common factor with 6, so Φ(6) = 2 = |{1, 5}|.

5 and 7 share no common factors with any smaller positive integers, so their Φ values are 4 and 6 respectively.

Now that we understand what the function is, let’s explore some properties of the function.

Question 7. Let p be any prime number. What is Φ(p)?

Φ(p) = p− 1 : for all integers 1 . . . p− 1, we know that p shares no common factors with it.

Question 8. Let p be any prime number and k any positive integer. What is Φ(pk)?

Imagine writing all the positive integers up to pk in many rows of p values each. On the first row, we write
1, 2, . . . p, the second row gets p+ 1, p+ 2, . . . 2p, etc. This is a total of pk−1 rows. Now we cross off multiples
of p, as these are the only numbers that share a common factor with pk. This crosses off a total of pk−1

numbers. The size of what is left is pk − pk−1, and that’s the value of Φ(pk).

A related interesting property of this function is that if gcd(m,n) = 1, then Φ(m · n) = Φ(m) · Φ(n).

Question 9. What is Φ(42)?

3We haven’t given you any proof of this fact in CSCI 270. This goes well into number theory to get the answer. A proof
that at least 50% of values of a will work for Carmichael numbers is available in [CLRS], §31.8, and only one test is obviously
needed for non-Carmichael composites.

4You might be wondering why we don’t just test at least 75% of the values of a between 1 and p− 1 so we can be sure that
p is prime. This would cause the algorithm to be O(p log p) which is worse than our sieve algorithm.



Note that 6 and 7 are relatively prime. Therefore, Φ(42) = Φ(6) · Φ(7) = 2 · 6 = 12. You can verify this
yourself if you would like, such as by checking how many values 1, 2, . . . 41 are divisible by 2, 3, or 7.

2 Public-Key Cryptography

Instead of relying on multiple people keeping a secret, public-key cryptography relies on one person keeping a
secret. If I want people to be able to send me messages using RSA, I post two values e and n (and tell people
that these are my RSA public key). In this section, we will start by showing how to send a secret message
to someone given their public key and then how to decode it once you receive such a message encoded with
your public key.

Then we will show how to select keys so that (a) people can easily send you messages and (b) only you can
read such messages.

2.1 RSA Encryption

RSA encryption is used to send secure messages. If I want to send a message, I need to know the recipient’s
public key. Given their public key e, n and a message I want to send M , I plug these values into the following
equation (modular exponentiation will be useful for this5) and send the encrypted message C.

• C = Me mod n

2.2 RSA Decryption

RSA decryption is used to read secure messages. If I want to read a message, I need to know my private
key. Given my private key d, n and an encrypted message C, I plug these values into the following equation
(again, modular exponentiation will be useful) and extract the decrypted message M .

• M = Cd mod n

2.3 Generating Keys

If I want to set up this system to receive messages securely, I need to know how to generate public and
private keys. I need to pick values of d, e, and n so that my private key will properly decrypt messages sent
by the public keys. Since I know I want C = Me mod n and M = Cd mod n, I need d and e to be inverses
of one another (mod n). This means that for any x, xde ≡ x (mod n). The following steps show why this is
a requirement:

• M = Cd mod n and C = Me mod n

• M = (Me mod n)d mod n

∗ remember from the modular exponentiation section that bx mod m = (b mod m)x mod m

• M = Med mod n

5see https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/fast-modular-
exponentiation for a very clear example of modular exponentiation



• equivalently, Mde ≡M (mod n)

• this needs to be true for any message M = x

It turns out that if ed ≡ 1 (mod Φ(n)), then for any x, xde ≡ x (mod n) and d and e are inverses (mod n).

When selecting n, I want a value that is difficult to factor. Otherwise, knowing n, it would be easy to solve
for Φ(n) because Φ(x ·y ·z) = Φ(x) ·Φ(y) ·Φ(z). Someone could intercept an encrypted message and, knowing
only the public key e, n, use Euclid’s algorithm to find d. If they have d, then they can decrypt the message.
Here is how they could find d:

• they know ed ≡ 1 (mod Φ), (Φ(n) is shortened to Φ here)

• ed + vΦ = 1, for some v (by the definition of mod)

• they can find values of d and v that satisfy this by using Euclid’s algorithm to find gcd(e, Φ). To show
how this works, let’s use e = 49,Φ = 38.

∗ (e) = 1 · (Φ) + 11 → 11 = e− 1 · Φ
∗ (Φ) = 3 · (e− 1 · Φ) + 5 → 5 = Φ− 3 · (e− 1 · Φ) = −3 · e + 4 · Φ
∗ (e− 1 ·Φ) = 2 · (−3 · e + 4 ·Φ) + 1 → 1 = e− 1 ·Φ− 2 · (−3 · e + 4 ·Φ) = 7 · e− 9 ·Φ
∗ d = 7, v = −9 solves this example. We only care about the value for d.

If I make n the product of two large prime numbers (which I know how to do using the Rabin-Miller
algorithm), factoring it will be very difficult. So, n = p ∗ q where p and q are large primes.

• Φ(n) = Φ(p · q)

• Φ(n) = Φ(p) · Φ(q) (because p and q are relatively prime)

• Φ(n) = (p− 1)(q − 1) (because p and q are prime)

I select a value for e and choose values for p and q such that e is relatively prime to Φ(n) = (p− 1)(q − 1).
Now I can use Euclid’s Algorithm to find a value for d so that ed ≡ 1 (mod Φ(n)) (see the approach above
to crack my message knowing Φ(n)).

3 Additional References

This chapter of CSCI 270 is a combination of algorithms as a matter of theory, algorithms as a matter
of practice, and number theory. In addition to the reading sections of your preferred CSCI 270 textbook,
students who find this particularly interesting can learn more from the following sources, from which I
borrowed a few examples for this document. For readability purposes they aren’t listed explicitly above; this
is not permission to do the same for your Writing 340 paper.

1. A Friendly Introduction to Number Theory by Joseph Silverman. This textbook was written to be
a Number Theory textbook for a math class offered as a “general ed” class for non-STEM students.
Chapters are short and clear; students interested in the math behind this section of CSCI 270 are
encouraged to read this.

2. Network Security: Private Communication in a Public World by Charlie Kaufman, Radia Perlman,
and Mike Speciner. This book covers a lot of cryptography (among other topics) as they are used for
computer and network security purposes.

3. CSCI 476, offered most Fall semesters, is a fun tech elective choice for students who want to know
more about cryptography.


