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This talk presents past research on poetry generation and
lays out future steps

curfew tolls the knell of parting day

day tolls the curfew of parting knell

curfew tolls the knell
once was a man from Bra- zil

metre pattern holds a bunch of beats

Poetry generation techniques Deep learning techniques
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Rule-based approaches to poetry generation fall short:
ASPERA

One for each line
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Sabed que en mi perfecta edad y armado Ladrara la verdad el viento airado
con mis ojos abiertos me he rendido en tal corazon por una planta dulce
al nifio que sabéis ciego y desnudo. al arbusto que volais mudo o helado.

The angry wind will bark the truth
in such a heart for a sweet plant
to the bush that you are silent or frozen.




Rule-based approaches to poetry generation fall short:
Racter

A crow is a bird, an eagle is a bird, a dove is a bird.

They all fly in the night and in the day. They fly when

the sky is red and when the heaven is blue. They fly through
the atmosphere. We cannot fly. We are not like a crow or

an eagle or a dove. We are not birds. But we can dream about
them. You can.

The Policeman’s Beard is Half Constructed




Evolutionary approaches to poetry generation fall short:
McGonagall
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The African lion, he dwells in the waste,
he has a big head and a very small waist;
but his shoulders are stark, and his jaws they are grim,

smélla pood littleichild willlnot play withiin. In a waste, a lion,

who has a very small waist,
dwells in a big head.




Deep learning is effective because it learns abstract
concepts

Machine Learning
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Variational autoencoders learn to encode and decode
objects to and from latent space
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Walking through pixel space Walking through latent space



Generative adversarial networks train two neural networks
against each other to improve both
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Variational autoencoders and generational adversarial
networks can be combined

VAE’s decoder
provides GAN with

a generator
encoder decoder/generator

>——> REAL / GEN

x discriminator

GAN’s discriminator
provides VAE with a
similarity metric

VAE

GAN

VAE/GAN




A conditioner can influence the outputs of a generative
network

Conditioner CNN
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How pleasing? How real? How interesting?
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My project proposal incorporates the best of these poetry
generation and deep learning techniques

Conditioner CNN
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VAE/GAN framework Condition stanzas with Hardcode grammar in
previous stanzas generator

* Deep learning handles
abstract ideas

* Grammar is rule-based
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