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Automated Poetry Generation
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This talk presents past research on poetry generation and 
lays out future steps 

Project proposal

Deep learning techniquesPoetry generation techniques



Rule-based approaches to poetry generation fall short:
ASPERA



4

Rule-based approaches to poetry generation fall short:
Racter

The Policeman’s Beard is Half Constructed
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Evolutionary approaches to poetry generation fall short:
McGonagall

haiku form

Fitness
Evaluation

Selection
Crossover/
Mutation

Initialization

Termination
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Deep learning is effective because it learns abstract 
concepts
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Latent space holds abstract representations of objects

Pixel Space

Latent Space
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Variational autoencoders learn to encode and decode 
objects to and from latent space

Walking through pixel space Walking through latent space



Generative adversarial networks train two neural networks 
against each other to improve both

counterfeiter

cop



Variational autoencoders and generational adversarial 
networks can be combined

VAE

GAN

VAE/GAN

VAE’s decoder 
provides GAN with 
a generator

GAN’s discriminator 
provides VAE with a 
similarity metric



A conditioner can influence the outputs of a generative 
network



My project proposal incorporates the best of these poetry 
generation and deep learning techniques 

VAE/GAN framework Hardcode grammar in 
generator

Condition stanzas with 
previous stanzas

Deep learning handles 
abstract ideas

Grammar is rule-based

Questions?
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