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ABSTRACT 
My research will investigate the possibility of automatically generated poetry. There has been 
minimal research in this area, and the research that has been done doesn’t take advantage of 
advanced computational techniques. The poetry generation programs that have been written are 
mostly rule-based. This is problematic because no one actually knows the steps necessary to 
create something as qualitative as poetry.  

Recently there have been significant advances in creative generation in other fields, especially 
image generation. Specifically, deep learning has proven useful because of its ability to 
encapsulate abstract ideas and processes. In this way, generation can occur without a pre-
designed process and even without a pre-specified goal. In this research proposal I will present 
past research on poetry generation, past research on creative generation using deep learning, and 
my plan to combine the best of these techniques towards automatic poetry generation. 

BACKGROUND 
I. Poetry Generation 

While there has been substantial research on natural language processing, research on text 
generation has mostly been limited to practical communication such as voice assistants. Creative 
text generation is more difficult because there isn’t a pre-specified communication goal, and the 
text has to have literary value beyond mere coherency. In this section I will present three past 
attempts at poetry generation. The first two attempts are purely rule-based. These fall short 
because they depend on a programmer to specify the steps necessary to write poetry. The third 
attempt I present uses machine learning, but doesn’t use deep learning. This also falls short 
because, although it doesn’t require a programmer to specify the steps to write poetry, it still 
requires a programmer to specify the qualities of a poem. 

A. Racter 

The earliest attempt I found at automatic poetry generation was a program called Racter. This 
was written by writer-programmer duo William Chamberlain and Thomas Etter in 1983 [1]. 
Unlike most artificial intelligence, Racter doesn’t try to mimic human thought; Racter is a 
completely rule-based program. This means that there is no use of advanced computational 
technology such as machine learning or deep learning. Based on these rules, Racter is able to 
follow basic grammatical necessities. For example, Racter knows how to properly conjugate 
verbs and track pronouns with their corresponding nouns [1]. Racter also has more sophisticated 
rules allowing for the development of specific poetic forms [1]. In order to mimic some level of 
coherency, Racter uses a dictionary file with each word having a 12-character identifier 
indicating its definition [1]. In this way, words with similar meanings, like sleep and dream, end 
up in the same sentence. Racter’s poeticness largely comes from its use of repetition. By 
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repeating words, phrases, and sentence structures throughout a poem, Racter mimics poetic 
techniques [2]. Because of this, at a first glance some of Racter’s poetry actually seems fairly 
realistic. The following is an example of one of Racter’s more convincing poems: 

A lion roars and a dog barks. It is interesting 
and fascinating that a bird will fly and not 
roar or bark. Enthralling stories about animals 
are in my dreams and I will sing them all if I 
am not exhausted and weary. 

Although Racter’s generated texts have some qualities of poetry, they lack coherency at a large 
scale. The individual sentences are grammatically correct because of Racter’s grammar rules, 
and the individual images even make sense because Racter combines words with similar 
definitions. However, the entire poem lacks cohesion. One area that Racter does excel in is its 
unique imagery. Perhaps because it approaches text generation in such a different way from 
humans, it combines words to create interesting and unique phrases. Racter is effective because 
its “odd oxymorons and quirky metaphors can appear as beat profundity” [1]. One goal of poetry 
is to describe the ordinary with the strange. Because oddity and quirkiness are a characteristic of 
poetry, poetry is a good literary form for Racter, and a good starting place for creative text 
generation research. 

B. ASPERA 

Like Racter, ASPERA is a rule-based poetry generator. It was developed by Gervas in 2001 for 
the creation of Spanish poetry. Although ASPERA and Racter are both rule-based, ASPERA 
approaches the problem of poetry generation in a very different way. ASPERA requires the user 
to input an intended message, length, and mood [3]. Based on this information, it chooses a 
poetic form. ASPERA avoids having to understand the complicated rules of grammar by 
selecting an existing poem of the chosen form and replacing individual words. Each word is 
marked with information such as its part of speech, number of syllables, and rhyme if necessary 
[3]. ASPERA assigns each line a portion of the message it is intended to convey. It then 
systematically replaces the words of the original poem with words matching the user’s intended 
message [3]. The following is an example of one of ASPERA’s poems and its translation.  

Ladrará la verdad el viento airado  
en tal corazón por una planta dulce  
al arbusto que volais mudo o helado. 

The angry wind will bark the truth 
in such a heart for a sweet plant 
to the bush that you are silent or frozen.  

While the poem follows grammatical rules, it is even less coherent than Racter’s poetry. An 
additional limitation is that ASPERA requires user input, which isn’t ideal for automatic poetry 
generation. With this in mind, ASPERA’s approach to poetry creation is clearly lacking. 
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C. McGonagall 

McGonagall is the only poetry generation program I found that uses advanced computational 
techniques. McGonagall uses evolutionary algorithms to create poetry [4]. In order to use 
evolutionary algorithms, one must specify what qualities the candidate solutions will be 
evaluated on. The creators of McGonagall chose to use meaningfulness, grammaticality, and 
poeticness as the goals [4]. Meaningfulness was defined as the similarity between the meaning of 
McGonagall’s chosen words and the words of a user’s inputted intended message. Poeticness 
was defined as McGonagall’s ability to follow a specific poetic form and stress pattern. 
Grammaticality is simply McGonagall’s ability to follow grammatical rules. Because proper 
grammar is a necessity, all evolvable solutions are required to uphold this constraint. On the 
other hand, meaningfulness and poeticness are imposed using penalties, meaning that the more a 
poem fulfills these constraints, the higher it will be ranked [4]. Valid grammar is upheld by using 
pre-specified grammar operators to evolve the candidate solutions. 

Evolutionary algorithms go through two main phases: evaluation and evolution. The process 
begins with a baseline of randomly-generated candidate solutions. These candidate solutions are 
evaluated, and the ones with the highest fitness are chosen to be evolved. The chosen solutions 
are evolved, either by crossover (swapping parts with another solution) or by mutation (randomly 
changing parts of its state) [4]. These mutations result in a new generation of candidate solutions, 
and the process repeats.  

Although McGonagall’s approach to poetry generation is significantly more sophisticated than 
Racter’s or ASPERA’s, its results are not particularly impressive. When evolving for both 
meaningfulness and poeticness, McGonagall was able to come close to proper meter and 
semantic similarity to an intended message [4]. However, McGonagall was never completely 
successful in these endeavors and its outputted poetry didn’t make a lot of sense. Additionally, 
McGonagall is limited because it requires a user’s intended message. The following  poems is 
one of the more successful results of McGonagall’s approach to poetry generation. The program 
was asked to write a haiku with similar semantics to the lines on the left. McGonagall’s poem is 
on the right. 

The African lion, he dwells in the waste, 
he has a big head and a very small 
waist. 

In a waste, a lion, 
who has a very small waist, 
dwells in a big head.  

The benefit of evolutionary algorithms comes from the distinction between genotype and 
phenotype [4]. In this case, the genotype is the text of a poem while the phenotype is its 
meaningfulness, poeticness, and grammaticality. This distinction allows the evolutionary 
algorithm to abstract away the steps necessary to make a poem meet these criteria. Since there 
aren’t known algorithms to create poetry, the best approach isn’t rule-based, but rather 
discriminative, meaning that the model generates solutions and tests them for viability before 
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accepting them [4]. Evolutionary algorithms are a well-documented form of generate-and-test 
approaches, and they avoid getting stuck at local optima [4]. 

Through the use of evolutionary algorithms, McGonagall is a step towards more sophisticated 
poetry generation than rule-based generators. However, the creators of McGonagall still have to 
specify the ways in which a poem is to be evaluated. While meaningfulness and poeticness are 
certainly integral qualities in a poem, it’s unclear how exactly these should be quantified. Also, 
there is more to a poem than just semantics and meter. However, it’s unclear precisely what 
makes a poem or how the different qualities of a poem should be weighted in an evaluation 
equation. In this way, McGonagall is still limited by the necessity of a programmer hard-coding 
the qualities of a poem. 

Unlike the qualitative aspects of a poem like meaningfulness and poeticness, grammar is possible 
to quantify. It would have been a waste of computational resources for McGonagall to include 
grammar as a penalty-imposed metric [4]. Thanks to extensive natural language processing 
research, we know the steps to ensure a text is grammatical, so it is beneficial to take advantage 
of this knowledge and tell the evolutionary algorithm how to keep the poem grammatical rather 
than asking it to create its own steps through evolution. Additionally, McGonagall was more 
successful in meeting its goals of meaningfulness, poeticness, and grammaticality when it was 
required to uphold complete grammar at every step of evolution [4]. This provides evidence that 
explicitly specified grammar rules are beneficial. 

II. Deep Learning 

The approaches to poetry generation I presented are lacking because they require a programmer 
to specify knowledge about poetry that we don’t have. These approaches require specification of 
the steps necessary to create poetry, or at least a quantitative way to evaluate poetry. Deep 
learning offers a way to avoid these requirements.  

Recently there has been substantial research on creative generation using deep learning. Much of 
this research has been on image generation because there are already deep neural networks 
(DNNs) that are good at categorizing images. For example, the Innovation Engine was created in 
2015. Like McGonagall, the Innovation Engine uses evolutionary algorithms to create candidate 
solutions. However, the Innovation Engine uses DNNs (a form of deep learning) to evaluate the 
candidate solutions at every step [5]. DNNs train on large data sets in order to learn how to 
categorize images. In this way, no programmer has to specify how to evaluate the images; the 
DNNs learn on their own. In order to test the Innovation Engine, some of its creations were 
submitted to an art contest at the University of Wyoming. They were not only accepted, but 
given an award, supporting the use of DNNs to generate creative, interesting images [5]. Based 
on this success, I investigated different approaches to generation using deep learning. I present 
these deep learning techniques in this section. 
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A. Latent Space 

Deep learning depends on latent space, a compact and abstract representation of an object. This 
is most easily understood in the case of images. We usually consider images in their pixel space, 
that is the representation of them according to the location and color of their pixels. If we look at 
handwritten numbers, 8’s and 3’s are close together in the pixel space because they share many 
pixels. However, if we consider their representations in latent space, 8’s and 3’s begin to cluster 
separately because they are completely different from a semantic standpoint [6]. Because latent 
space is a compressed representation compared to pixel space, the latent space doesn’t have room 
to represent images that don’t correspond to something similar to a hand-written number; it must 
learn how to represent the relevant features efficiently [6]. This causes the latent space to encode 
the images based on meaningful, abstract concepts such as what number is written. 

Within this latent space, all objects are semantically meaningful. Once you’ve accessed this 
latent space it’s possible to generate new, valid objects in several ways. The simplest way is by 
walking around values in the latent space. Returning to the handwritten numbers example, if you 
sampled random values in the pixel space, most would be random static. However, because the 
latent space is a compressed representation and is semantically meaningful, if you remain in the 
latent space, you find objects that are meaningful. One way to explore latent space is through 
interpolation, varying the latent vector between two objects [7]. Interpolating between a 5 and 9 
in pixel space results in intermediate steps that are invalid, that look like a 5 and a 9 were written 
over each other. However, interpolating between a 5 and 9 in latent space results in intermediate 
steps that are valid, that look like new handwritten numbers (see Figure 1). 

Another way to way to explore the latent space is to augment the latent vector dimensions 
individually, showing what semantic concept each dimension represents. For example, the latent 
space of 3D chair models was shown to have dimensions representing the thickness of different 
parts of the chair [7]. 

A more complicated way to generate objects from the latent space is through latent vector 
arithmetic [7]. Subtracting two latent vectors results in a vector that encodes the difference 
between the two objects. See Figure 2 for an example of latent arithmetic on 3D chair models. 
When a chair without arms is subtracted from a chair with arms, this results in a vector 
representing the abstract concept of an arm. When this vector is added to other styles of chairs 
without arms, it results in the other styles of chairs with arms. 
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Fig 1. Interpolating between handwritten numbers in pixel space (left) 
and latent space (right) [6]



 

B. Variational Autoencoders 

As seen in the previous section, once we have access to latent space, we can explore that space to 
generate new objects. The next question is how to create the latent space itself and how to 
decode latent space objects into data space objects. This is where deep learning comes in. 
Variational autoencoders (VAEs) are made of two neural networks. One is trained to encode a 
data space into a more compressed latent space, and the other is trained to decode the latent 
space back into the data space [8]. See Figure 3 for the structure of a VAE. By training the 
encoding and decoding network in tandem, a latent space is created. This latent space can be 
explored and decoded into valid data space objects. 

The encoder and decoder neural networks are trained using stochastic gradient descent, 
rewarding the networks when decoding of the latent space results in objects in the data space that 
are similar to the original data set [8]. This maximizes the probability of a given point in the 
latent space corresponding to an original data point  [8]. The maximum likelihood principle says 
that, “if the model is likely to produce training set samples, then it is also likely to produce 
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Fig 2. Latent space arithmetic on 3D chair models [7]

Fig 3. Structure of a variational autoencoder 
http://ijdykeman.github.io/ml/2016/12/21/cvae.html



similar samples, and unlikely to produce dissimilar ones” [8]. Because of this principle, training 
the neural networks to reproduce objects from the original data set results in a latent space that 
can also generate objects that are novel, but still similar to the original data set and therefore 
semantically meaningful. Through neural network training, the encoder learns to model the 
abstract concepts of these objects within the latent structure without the programmer needing to 
specify how to do so [8]. 

A related use of VAE is part completion, where an object with missing parts is provided and the 
VAE attempts to complete the part. Nash and Williams showed this to be successful in the 
completion of 3D models. They began with 3D models of planes, bikes, and chairs from which 
they removed individual parts [9]. They then asked the VAE to complete the models. They found 
that the VAE was successful in creating complete, semantically meaningful objects that differed 
from the originals [9]. See Figure 4 for examples of their part completion results. 

C. Generative Adversarial Networks 

Another deep learning approach to object generation is generative adversarial networks (GANs). 
GANs are made up of two neural networks that are trained in competition. The first neural 
network is generative and creates new objects. The second network is discriminative and tries to 
guess if a given object is created by the generator or is part of the training set [10]. See Figure 5 
for the structure of a GAN. These two neural networks can be thought of as a counterfeiter and a 
cop. The generator network is like the counterfeiter, creating fake objects, while the 
discriminative network is like the cop, trying to determine which objects are fake [10]. 
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Fig 4. Using variational autoencoders to complete partial objects [9]



GANs are a prominent technique used in creative generation. They have proven themselves 
viable generators for music, images, and 3D models among other fields [9, 11, 12]. Figure 6 
shows ten face images generated by a GAN. The faces highlighted in yellow are the faces from 
the training set most similar to their neighbors. The fact that the generated images are not 
identical to any of the training set images demonstrates the GAN’s ability to generate novel 
objects. The fact that the generated images are recognizable as faces demonstrates the GAN’s 
ability to learn the abstract concepts behind the faces and create semantically meaningful images. 
 

D. Combining VAEs and GANs 

Variational autoencoders and generative adversarial networks have both proven themselves 
successful at creative generation, and some research has gone into combining the two. For 
example, Larsen researched generating face images using a VAE/GAN combination. As depicted 
in Figure 7, the decoder network of the VAE is used as the generator for the GAN and the 
discriminator network of the GAN is used as the similarity metric for the VAE [13]. 
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Fig 5. Generative adversarial network diagram 
https://skymind.ai/wiki/generative-adversarial-network-gan

Fig 6. Results of face generation using a GAN [12]



 

Combining the VAE and GAN benefits both models. The combination benefits the GAN because 
the generator starts from something meaningful (a position in latent space) rather than random 
noise. More substantially, the combination benefits the VAE by providing a similarity metric 
based on a neural network (the GAN’s discriminator) rather than a simple pixel distance equation 
[13]. As previously described in the section on latent space, deep learning provides an 
understanding of abstract ideas (like the presence of eyes and noses in face images) which pixel 
distance does not. To understand the significance of this, consider an image A and a different 
image B which is image A shifted a few pixels to the left. A good similarity metric would say that 
image A and B are very similar [13]. The GAN’s discriminator would be able to say that image A 
and B are similar because it understands the images at a semantic level. On the other hand, pixel 
distance might say that they are substantially different because the pixels don’t line up. Because 
of this, VAEs trained with a pixel distance similarity metric often end up with fuzzy results [13]. 
Figure 8 shows the results of Larsen’s research. The faces generated solely from the VAE are 
significantly fuzzier than those generated from the GAN or VAE/GAN combination. The GAN 
and VAE/GAN result in similar quality faces images. The GAN faces seem to combine feminine 
and masculine features on the same face more than the VAE/GAN, but the differences are not 
significant. The success of the VAE/GAN combination supports combining the two frameworks 
as a viable technique. 
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Fig 7. Diagram of combined VAE/GAN [13]

Fig 8. Face generation using a VAE (top), a GAN (middle), 
and a VAE/GAN combination (bottom)  [13]



E. Conditioning Generation 

The generative adversarial network model can be adjusted to be more robust. One way to 
enhance GANs is to condition the generator, influencing the objects that the generator creates. 
The goal of conditioning is to have the generator create novel objects particularly similar to the 
condition object. Conditioning occurs after the GAN is trained. A conditioner network is created 
with neural layers opposite the generator network in structure [11]. As depicted in Figure 9, the 
condition objects are deconstructed and hooked up to the generator’s layers in order to influence 
the objects generated [11]. This setup allows the level of creativity versus similarity to the 
condition object to be be adjusted by connecting the condition object to more or fewer layers in 
the generator’s neural network [11]. 

In Yang’s research, conditioned generators are used to create music. Yang conditions the 
generator in two different ways. In the first model, each bar of music is conditioned with the 
previous bar of music by connecting the condition object to all four layers of the generator’s 
neural network [11]. In the second model, each bar of music is conditioned with its own chord 
progression by connecting the condition object to all four layers of the generator’s neural 
network. In the second model, each bar is also conditioned with the previous bar. However, the 
condition object of the previous bar is only connected to one layer so that the chord condition 
dominates [11]. Figure 10 shows the results of  Yang’s study. MidiNet 1 is the first model, 
conditioned on the previous bar, and MidiNet 2 is the second model, conditioned on the current 
bar’s chord as well as the previous bar. The other three models are previous well-researched 
music generators that don’t use deep neural networks.  
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Fig 9. Diagram of a conditioned generative neural network [11]



 

The fact that both MidiNet models perform comparably or better than the other three models 
(especially in interestingness) supports the use of deep neural networks in creative generation. 
That MidiNet 2, which is conditioned twice, performs better than MidiNet 1, which only 
conditions once, in its pleasantness and realness supports the conditioning of generative 
networks. Yang’s approach is successful because conditioning each bar with a chord progression 
makes the generated music more realistic, and conditioning each bar on the previous bar adds a 
sense of continuity throughout the piece. 

F. Multifaceted Feature Visualization 

The section on latent space discusses various ways of exploring the latent space to investigate 
how generator networks encode abstract concepts. This section will demonstrate how to inspect 
the structure of the discriminative network. A common way to investigate which nodes encode 
which features is through activation maximization. In this technique, objects are evolved to 
maximally set off a given node [14]. The evolved object is then qualitatively examined to 
determine what the given node has learned to look for. For example, in the image domain, one 
node in a discriminative network might fire in response to images that look like apples. Thus, the 
evolved image that maximally activates this node will look somewhat like an apple.  

The problem with activation maximization is that neural networks are more complicated than 
this technique assumes. Rather than encoding one feature, each node represents an abstract 
concept which can contain multiple features. For example, one research paper discovered a 
“grocery” node within an image discriminative network [14]. This “grocery” node activated for 
various features pertaining to grocery stores, including rows of apples, rows of artichokes, and 
store fronts [14]. Because a node can encode multiple features, simple activation maximization 
techniques often results in images that inaccurately mix colors, object parts, and even different 
scales of images [14].  
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Fig 10. Results of music generators as rated by people with musical backgrounds 
(top) and people without musical backgrounds (bottom) [11]



One approach to improving activation maximization is multifaceted feature visualization. With 
this technique, objects are evolved towards multiple features [14]. By evolving towards multiple 
images, multifaceted feature visualization is able to discover all the different features that make a 
given node fire instead of inappropriately mixing these features. Using multifaceted feature 
visualization, Nguyen and Yosinki were able to evolve images of the various features that set off 
the “grocery” node described above (see Figure 11).  

PROPOSAL 
Deep learning has proven itself successful in applications of creative generation, particularly in 
the field of image generation. I would like to take these techniques and apply them to poetry 
generation. Poetry generation is a good starting place within the field of creative language 
generation because poetry is generally shorter than prose and has fewer constraints. My research 
proposal involves techniques from past research on deep learning applied to creative generation 
as well as past research on poetry generation. 

I plan to use the VAE/GAN framework as the basis of my poetry generation system because 
combining the two techniques takes advantage of the benefits of each. The success of using VAE 
or GAN models separately for creative generation in other domains is supported extensively, and 
there is also some research supporting the combination of these frameworks [9, 11, 12, 13]. As 
training data, I intend to use online poetry databases. I will begin with single stanza poems of a 
simple form in modern English. By starting with these strict limitations, my initial VAE/GAN 
framework is more likely to successfully encode poetry. 

After the VAE/GAN framework has been trained, I plan to implement conditioning of the GAN 
generator. Unlike images, poetry has a starting point, ending point, and a path between that takes 
time to follow. Because of this, it is necessary for a poem to have a sense of continuity of theme 
and form. This is similar to the task of music generation, in which musical bars must retain a 
sense of continuity throughout a piece. Therefore, I plan to use conditioning techniques similar to 
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Fig 11. Results of multifaceted feature visualization on a “grocery” node (left) and the 
corresponding training set images that activate the “grocery” node (right) [14]



those implemented in the MidiNet model to generate music [11]. Rather than conditioning 
musical bars on past musical bars, I plan to condition poetic stanzas on past poetic stanzas. By 
creating one stanza at a time, the VAE/GAN framework will only have to produce small chunks 
of text, increasing the likelihood of success. Using conditioning techniques, each stanza will 
make sense in combination with previously created stanzas despite being generated separately. 
The research on MidiNet also demonstrates the feasibility of conditioning on multiple condition 
objects with different proportions. I plan to condition a given stanza most heavily on the 
preceding stanza by connecting the previous stanza’s condition object to the most network layers. 
I can also condition on older stanzas with a lower proportion by connecting their condition 
objects to fewer layers. 

I would also like to research the technique of part completion used in the generation of 3D 
objects [9]. It’s possible that starting the generation process with part of a poem already complete 
would help the VAE/GAN framework create a plausible poem. If part completion is successful 
starting with half of a real poem, I would like to try running a second round of part completion 
starting with the half of a poem created during the first round. In this way, the VAE/GAN 
framework will benefit in both rounds from having half of the poem already written, but will end 
up creating an entirely new poem. 

Finally, if my poetry generator is able to create anything resembling poetry, I would like to 
investigate how the generator network has abstracted the concepts of what makes poetry. To do 
so, I will use various techniques of feature visualization. To examine the generator network, I 
will explore the latent space of the VAE using the techniques described in the latent space 
section. By manipulating the vector dimensions and qualitatively observing how the poetry 
changes, I will get an idea of what abstract ideas the various dimensions encode. Similarly, I can 
observe latent space arithmetic on poems and the interpolation between poems. To examine the 
discriminative network, I plan to use activation maximization with multifaceted feature 
visualization as described in the section on multifaceted feature visualization. Because the 
abstract features that make up poetry are complicated, it is likely that the nodes in the 
discriminative network will encode multiple features, so using multifaceted feature visualization 
will give a more robust description of what concepts the nodes encode. 

Because I plan to take a deep learning approach to poetry generation, much of the past rule-based 
research in this field will not be applicable. However, one crucial takeaway from past research on 
poetry generation is the hard-coding of grammar constraints. Because it is necessary for the 
grammar of a poem to be completely correct and because grammar can be modeled as a set of 
rules, I plan to impose grammar in a rule-based approach. There is no reason to rely on a deep 
neural network to learn the abstract concepts of grammar; hard-coding grammar rules takes 
advantage of past research in natural language processing and avoids wasting computational 
resources implementing grammar through learned networks. The grammar rules will be imposed 
on the decoder of the VAE (which is also the generator of the GAN). This way, as the VAE/GAN 
framework is trained, it will always be required to maintain grammatical validity. 
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My research hopes to use deep learning techniques, which have largely been used within the 
image generation domain, for language generation. By combining aspects of natural language 
processing and poetry generation techniques with deep learning and creative generation 
techniques, I aim to demonstrate the feasibility of deep learning as a poetry generation tool. 
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